期刊文献+

功能化石墨烯的制备及其在锂硫电池中的应用

Preparation and Application of Functionalized Graphene for Lithium-Sulfur Batteries
在线阅读 下载PDF
导出
摘要 采用改进的Hummer's法制备了氧化石墨(GO),对GO进行氨基接枝和还原,以氨基为桥梁制备了氨基功能化石墨烯(EFG)/聚苯胺(PANI)复合材料,并采用化学沉积法制备了EFG/PANI/硫(S)复合材料,将其用作锂硫电池正极。通过傅立叶变换红外光谱仪、X射线衍射仪、扫描电子显微镜、比表面积分析仪对复合材料的微观结构、形貌和比表面积等进行了表征,采用恒流充放电测试和交流阻抗测试对复合材料的电化学性能进行了研究。结果表明,制备的EFG/PANI富含孔隙结构,能够为锂硫电池的电化学反应提供充足的空间;该材料中富含的氮能够与多硫化物中的Li+以化学键的方式结合,有效缓解锂硫电池的"穿梭效应"。 The graphite oxide (GO) was prepared by modified Hummer's method,and amino grafting and reduction of GO were performed. Then, amino-functionalized graphene (EFG)/polyaniline (PANI) composites was obtained by chemical deposition method and used as the cathode material for lithium-sulfur (Li-S) batteries. The microstructure,morphology and specific surface area of the EFG/PANI composites were characterized by FTIR, XRD, SEM, and BET, respectively. Electrochemical performance of the composites was determined by galvanostatic charge-discharge test and impedance spectroscopy. Results showed that the EFG/PANI was rich in the pore structure,providing enough space to accommodate the active materials for Li-S batteries,and alleviating the shuttle effect effectively with the chemical bond combination between abundant N and Li+ in polysulfides to improve the electrochemical performance of Li-S batteries.
作者 罗迪 张璐 姚瑾 杨蓉 李兰 燕映霖 雷颖 Luo Di;Zhang Lu;Yao Jin;Yang Rong;Li Lan;Yan Yinglin;Lei Ying(Shaanxi Electric Power Corporation Economic Research Institute,Xi’ an 710065,China;School of Science,Xi’ an University of Technology,Xi’ an 710048,China;School of Materials Science and Engineering,Xi’ an University of Technology,Xi’ an 710048,China)
出处 《工程塑料应用》 CAS CSCD 北大核心 2018年第7期13-17,共5页 Engineering Plastics Application
基金 国家国际科技合作专项(2015DFR50350) 国家自然科学基金项目(21503166) 陕西省科技计划项目(2017GY-160) 陕西省自然科学基础研究计划项目(2017JQ5055)
关键词 石墨烯 功能化 聚苯胺 正极材料 锂硫电池 graphene functionalized polyaniline cathode material lithium-sulfur battery
作者简介 通讯作者:杨蓉,教授,主要研究方向为电化学E-mail:yangrong@xaut.edu.cn
  • 相关文献

参考文献4

二级参考文献32

  • 1Wallaee P R. The band theory of graphite[J]. Physical Review, 1947, 71 (9): 622-629.
  • 2Mouras S, Harem A, Djurado D, et al. Synthesis of first stage graphite intercalation compounds with fluorides[J]. Revue Dechimie Minerale, 1987, 24 (5): 572-582.
  • 3Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696).. 666-669.
  • 4Barone V, Hod O, Peralta J E, et al. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density fimctional[J]. Acc. Chem. Res., 2011, 44, 269-279.
  • 5Fang Ying. Graphene and nanowire transistors for cellularlnterfacesandelectricalrecordings[C]//中国化学会第27届学术年会,福建厦门,2010.
  • 6Hu H, Yu J, Li Y, et al. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery[J]. Journal of Biomedical Materials Research Part A, 2012, 100A ( 1 ): 141-148.
  • 7Li C, Li Z, Zhu H, et al. Graphene nano-"patches"on a carbon nanotube network for highly transparent/conductive thin filmapplications[J]. The Journal of Physical Chemistry C, 2010, 114 (33): 14008-14012.
  • 8Nair R, Wu H, Jayaram P, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335 (6067): 442-444.
  • 9Liang Y, Li Y, Wang H, et al. Co304 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10 (10): 780-786.
  • 10Kou R, $hao Y, Wang D, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytie oxygen reduction[J]. Electrochemistry Communications, 2009,11 (5): 954-957.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部