期刊文献+

基于互信息的荧光素眼底血管造影图像序列的自动配准方法 被引量:4

A Novel Automatic Registration Method for Fluorescein Fundus Angiography Sequences Based on Mutual Information
在线阅读 下载PDF
导出
摘要 荧光素眼底血管造影技术(FFA)是眼底疾病诊断的金标准,但是造影过程中病人不可避免地转动眼球,造成FFA图像序列中感兴趣区域(例如视网膜血管分支、新生血管)的位置发生变化,给后续的图像定量分析与病情准确评估诊断带来困难。针对上述问题,该文提出一种基于互信息的FFA图像序列配准方法。首先采用多尺度线性滤波方法分割出图像中的血管,并利用图像金字塔对分割后的图像进行下采样,然后利用互信息计算待配准图像与参考图像的相似性,通过进化策略对配准参数进行优化,获得互信息最大时图像的空间变换矩阵,实现FFA图像的配准。采用上述方法,对4位患者共计1039帧FFA图像进行测试,总体配准率达到93%,失败率仅为1%;与常用的配准方法相比,所提方法的配准率、配准速度和鲁棒性等综合性能良好,为FFA影像的定量分析在未来的临床应用奠定了基础。 Fluorescein Fundus Angiography (FFA) is regarded as the golden diagnostic criteria for fundus diseases. However, dislocation or rotation of the interested images on anatomic landmark (like retinal vascular branches, neovascularization), caused by inevitable eyeball movement, brings about difficulties in subsequent quantitative analysis and progress assessment of the diseases. In order to solve the above problems, a novel method based on mutual information is proposed for automatic registration of FFA image sequence. Firstly, the vessels of image sequence are segmented by multi-scale linear filter and down sampled hereafter by image pyramid. Then, the similarity of sampled images is calculated by mutual information and the evolution strategy is adopted to optimize the registration parameters. Finally, the transformation matrix with maximum mutual information is obtained to register the FFA image. Tests with FFA image sequences of 4 patients (total 1039 frames) show that the overall registration rate of the algorithm reaches 93% and the failure rate is only 1%. Compared with the classical registration methods, the proposed method shows better comprehensive performance in terms of registration rate, computing speed as well as robustness. It lays basic foundations for quantitative analysis on FFA images and potential clinical application.
作者 刘小燕 王皓浩 孙刚 张谱 刘敏 高玲 LIU Xiaoyan;WANG Haohao;SUN Gang;ZHANG Pu;LIU Min;GAO Ling(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;Department of Ophthalmology,the Second Xiangya hospital of Central South University,Changsha 410011,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第8期1919-1926,共8页 Journal of Electronics & Information Technology
关键词 荧光素眼底血管造影 图像序列 互信息 血管分割 Fluorescein Fundus Angiography (FFA) Image sequence Mutual information Vascular segmentation
作者简介 通信作者:刘小燕xiaoyan.liu@hnu.edu.cn刘小燕:女,1973年生,教授,博士生导师,研究方向为图像处理技术及其应用、智能建模与控制.;王皓浩:男,1994年生,硕士生,研究方向为医学图像处理技术.;孙刚:男,1992年生,博士生,研究方向为医学图像处理技术.;张谱:男,1985年生,博士生,研究方向为视网膜、脉络膜及玻璃体相关疾病.;刘敏:男,1981年生,副教授,博士生导师,研究方向为计算机视觉、模式识别以及机器学习.;高玲:女,1968年生,主任医师,研究方向为视网膜、脉络膜及玻璃体相关疾病.
  • 相关文献

参考文献4

二级参考文献48

  • 1LIU Yan and YU Feihong. An automatic image fusion algorithm for unregistered multiply multi-focus images[J]. Optics Communications, 2015, 341: 101-113.
  • 2LEI Fei and WANG Wenxue. A fast method for image mosaic based on SURF[C]. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 2014: 79-82.
  • 3BENTOUTOU Y, NASREDDING T, Kidiyo K, et al. An automatic image registration for applications in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2127-2137.
  • 4MIAO Qiguang, SHI Cheng, XU Pengfei, et al. A novel algorithm of image fusion using shearlets[J]. Optics Communications, 2011, 284(6): 1540-1547.
  • 5LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guide filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
  • 6SHI Cheng, MIAO Qiguang, and XU Pengfei. A novel algorithm of image fusion based on shearlets and PCNN[J]. Neurocomputing, 2013, 117: 47-53.
  • 7KONG Weiwei and LIU Jianpeng. Technique for image fusion based on nonsubsampled shearlet transform and improved pulse coupled neural network[J]. Optical Engineering, 2013, 52(1): 017001.
  • 8BILODEAU G A, TORABI A, and MORIN F. Visible and infrared image registration using trajectories and composite foreground images[J]. Image and Vision Computing, 2011, 29(1): 41-50.
  • 9CHEN S, GUO Q, LEUNG H, et al. A maximum likelihood approach to joint image registration and fusion[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1363-1372.
  • 10ZHANG Qian, CAO Zhiguo, HU Zhongwen, et al. Joint image registration and fusion for panchromatic and multispectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 467-471.

共引文献55

同被引文献40

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部