摘要
Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the observation that prior information of an image is relevant to the estimation of sparse coefficients, we introduce the prior information into maximum a posteriori(MAP) estimation of sparse coefficients by an appropriate estimate of the probability density function. Extending to structured sparsity, a nonlocal image denoising model: Improved Simultaneous Sparse Coding with Laplacian Scale Mixture(ISSC-LSM) is proposed. The centering preprocessing, which admits biased-mean of sparse coefficients and saves expensive computation, is done firstly. By alternating minimization and learning an orthogonal PCA dictionary, an efficient algorithm with closed-form solutions is proposed. When applied to noise removal, our proposed ISSC-LSM can capture structured image features, and the adoption of image prior information leads to highly competitive denoising performance. Experimental results show that the proposed method often provides higher subjective and objective qualities than other competing approaches. Our method is most suitable for processing images with abundant self-repeating patterns by effectively suppressing undesirable artifacts while maintaining the textures and edges.
Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the observation that prior information of an image is relevant to the estimation of sparse coefficients, we introduce the prior information into maximum a posteriori(MAP) estimation of sparse coefficients by an appropriate estimate of the probability density function. Extending to structured sparsity, a nonlocal image denoising model: Improved Simultaneous Sparse Coding with Laplacian Scale Mixture(ISSC-LSM) is proposed. The centering preprocessing, which admits biased-mean of sparse coefficients and saves expensive computation, is done firstly. By alternating minimization and learning an orthogonal PCA dictionary, an efficient algorithm with closed-form solutions is proposed. When applied to noise removal, our proposed ISSC-LSM can capture structured image features, and the adoption of image prior information leads to highly competitive denoising performance. Experimental results show that the proposed method often provides higher subjective and objective qualities than other competing approaches. Our method is most suitable for processing images with abundant self-repeating patterns by effectively suppressing undesirable artifacts while maintaining the textures and edges.
基金
Supported by the National Natural Science Foundation of China(61573014)
作者简介
Biography: YE Jimin, male, Professor, Ph.D., research direction: statistical signal processing, image processing and statistical inference. E-mail: j mye@rnail.xidian.edu.cn