期刊文献+

脉冲电流下AZ31镁合金拉伸行为及其显微组织演变 被引量:3

Tensile Deformation Behavior and Microstructure Evolution of AZ31 Magnesium Alloy Under Pulse Current
原文传递
导出
摘要 为改善镁合金塑性变形能力,在AZ31镁合金的拉伸变形中引入高密度脉冲电流,研究了脉冲电流对合金拉伸行为及其显微组织的影响规律,并探讨了其机理。结果表明,与未加脉冲电流拉伸相比,施加脉冲电流的AZ31镁合金的变形抗力显著降低,并且随脉冲电流密度的增加,其变形抗力下降的幅度增大。施加脉冲电流的合金在拉伸过程中发生了明显的动态再结晶,再结晶晶粒细小均匀,从而降低了合金的变形抗力。原因在于脉冲电流的纯电效应不仅能够降低塑性变形过程中位错运动阻力,同时可以加快小角度亚晶向大角度亚晶转变,促进了合金的动态再结晶,提高了合金塑性变形能力。 In order to improve the plastic deformation ability of magnesium alloys, tensile tests with high density pulse current were performed on AZ31 magnesium alloy. The effect of pulse current on the microstructure and tensile deformation behavior of the alloy was investigated and the mechanism was also discussed. The results show that the deformation resistance of AZ31 magnesium alloy with pulse current is greatly reduced compared with that without pulse current, and the decreasing amplitude increases with the increase of current density. During the tensile test, dynamic recrystallization(DRX) occurs in the alloy with pulse current, which reduces the deformation resistance. The increase in the plastic deforming ability of the alloy is attributed to the electrical effect of the pulse current, which can reduce the dislocation movement resistance in the plastic deformation process and accelerate the transition of the grain boundary from a small angle to a large angle.
作者 王杰 王磊 刘杨 安金岚 宋秀 Wang Jie;Wang Lei;Liu Yang;An Jinlan;Song Xiu(Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2018年第6期1906-1910,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51371044)
关键词 脉冲电流 AZ31镁合金 电效应 动态再结晶 pulse current AZ31 magnesium alloy electrical effect dynamic recrystallization
作者简介 王杰,女,1992年生,硕士生,东北大学材料各向异性与织构工程教育部重点实验室,辽宁沈阳110819,电话:024—83681685,Email:wangj0920@foxmail.com
  • 相关文献

参考文献1

二级参考文献100

  • 1Zhang M X, Kelly P M. Scr Mater, 2003; 48: 379.
  • 2Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2004; A386: 447.
  • 3Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Scr Mater, 2010; 63: 725.
  • 4Ball E A, Prangnell P B. Scr Metall Mater, 1994; 31: 111.
  • 5Mackenzie L W F, Davis B, Humphreys F J, Lorimer G W. Mater Sci Technol, 2007; 23: 1173.
  • 6Senn J W, Agnew S R. Magnesium Technology 2008. New Orleans: TMS, 2008: 153.
  • 7Senn J W, Agnew S R. Proc Magnesium Technology in the Global Age. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2006: 115.
  • 8Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665.
  • 9Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375.
  • 10Agnew S R, Duygulu O. Int J Plast, 2005; 21: 1161.

共引文献166

同被引文献63

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部