期刊文献+

铜胁迫下玉米叶片的HHT包络谱变化与污染预测模型 被引量:4

Changes of HHT Envelope Spectra and Pollution Prediction Models on Corn Leaves Polluted by Copper Stress
在线阅读 下载PDF
导出
摘要 根据不同Cu^(2+)胁迫梯度下玉米叶片光谱及叶片中Cu^(2+)含量数据,利用经验模态分解(EMD)获取不同胁迫梯度下叶片光谱的各阶本征模态函数(IMF),选IMF4进行HHT包络谱分析,研究了玉米叶片在不同Cu^(2+)胁迫梯度下光谱的Hilbert包络谱变化特征与污染程度预测方法。通过构建包络谱峰值指标(E_1)和包络谱峭度系数(E_2)特征参量,分析叶片在不同Cu^(2+)胁迫梯度下的包络谱变化;同时基于包络谱特征参量值与叶片中Cu^(2+)含量的相关性分析和逐步回归统计,建立了玉米叶片重金属污染的Cu^(2+)含量的单、双因素变量预测模型。实验结果表明:不同Cu^(2+)胁迫梯度下,玉米叶片光谱的包络谱为分布在100 Hz频率以内的连续谱;E_1和E_2值均表现出与叶片中Cu^(2+)含量呈正相关的变化趋势,两个包络谱特征参量值都在Cu(150)位置达到最大值;由于E_1和E_2值与叶片中Cu^(2+)含量都具有良好的相关性,可把E_1和E_2作为监测玉米重金属污染预测指标。根据E_1、E_2单因素及双因素变量构建的Cu^(2+)含量预测模型应用结果比较,表明E_1、E_2双因素变量构建的模型具有最优的预测能力。 Based on the data of leaf spectrum and Cu^2+ content in corn leaves under different Cu^2+ stress gradients, the intrinsic mode function (IMF) of leaf spectrum under different stress gradients was obtained by empirical mode decomposition (EMD), and IMF4 was selected for HHT envelope analysis. The variation trend and pollution degree of Hilbert envelope spectrum of maize leaves under different Cu^2+ stress gradients were studied. The peak index of envelope spectrum (E1) and envelope spectral kurtosis coefficient (E2) were constructed to analyze the envelope spectrum changes of leaves under different Cu^2+ pollution levels. The correlation analysis and stepwise regression statistics between the characteristic parameters of envelope spectrum and the content of Cu^2+ in leaves were also carried out to establish a single and double variable prediction model of Cu^2+ content in maize leaves. The experimental results showed that the spectral envelope of corn leaves under different concentrations of Cu^2+ stress was a continuum within 100Hz frequency;values of E1 and E2 showed a positive correlation with the Cu^2+ content in leaves. The characteristic parameter values of two envelope spectra all reached the maximum at the Cu(150) position, since both E1 and E2 values had a good correlation with the content of Cu^2+ in leaves, E1 and E2 can be used as predictors for monitoring heavy metal pollution in maize plants. According to the application results of Cu^2+ content prediction model constructed by E1 and E2 single and double variables, it was proved that the bivariate model constructed by E1 and E2 had the best predictive ability.
作者 杨可明 程龙 郭辉 王敏 YANG Keming;CHENG Long;GUO Hui;WANG Min(State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology ( Beijing ) , Beijing 100083, China;College of Geoscience and Surveying Engineering, China University of Mining and Technology ( Beijing ), Beijing 100083, China;School of Surveying and Mapping, Anhui University of Science and Technology, Huainan 232001, China;North China University of Science and Technology, Tangshan 063210, China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2018年第7期168-176,共9页 Transactions of the Chinese Society for Agricultural Machinery
基金 煤炭资源与安全开采国家重点实验室开放基金项目(SKLCRSM17KFA09) 国家自然科学基金项目(41271436) 安徽省教育厅高校自然科学研究重点项目(KJ2018A0070)
关键词 玉米叶片 铜污染 希尔伯特-黄变换 包络谱 特征参量 corn leaves copper pollution Hilbert - Huang transform envelope spectrum characteristic parameters
作者简介 杨可明(1969-),男,教授,主要从事高光谱遥感、地理与形变信息研究,E-mail:ykm69@163.com
  • 相关文献

参考文献16

二级参考文献265

共引文献634

同被引文献59

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部