期刊文献+

改进的细菌觅食算法用于多阈值图像分割 被引量:2

Multilevel Thresholding Approach for Image Segmentation Based on Improved Bacteria Foraging Algorithm
在线阅读 下载PDF
导出
摘要 针对细菌觅食算法中细菌趋化方向选择的随机性,以及趋化操作中更新细菌位置没有参照菌群群体最优位置以及个体历史最优位置信息等问题,提出改进的细菌觅食算法(IBFA)。首先,细菌趋化方向的选择,结合细菌自身学习及群体合作,避免浪费细菌到达最优解的时间;其次,粒子群算法应用到趋化步骤中,更新细菌位置参照菌群群体最优位置以及个体历史最优位置信息,以提高算法全局搜索能力和收敛速度;最后,由IBFA算法优化最大类间方差函数来取得最优阈值。IBFA算法的性能分别与传统最大类间方差法、基于细菌觅食的多阈值图像分割结果对比,实验结果表明,本文算法能有效缩短图像分割时间,提高图像分割准确率。 Because the selection of bacteria chemotaxis direction has the randomness in bacteria foraging algorithm (BFA) and bacterial updates positions without referring to the optimal location of bacterial colony and the optimal location information of individual history, so the improved bacteria foraging algorithm is presented (IBFA). First, the strategy of the bacterial chemotaxis direction is combined with the bacteria individual cognitive and group cooperation, so it can avoid wasting bacteria to the optimal solution time;Second, parti- cle swarm optimization (PSO) algorithm is applied to the chemotactic step, bacterial updates positions referring to the optimal location of bacterial colony and the optimal location information of individual history, to improve the global search ability and convergence speed ; Finally, maximum between - class variance method is optimized by IBFA algorithm to obtain the optimal thresholds. The performance of IBFA algorithm is compared with Otsu and the multi -threshold image segmentation based on BFA algorithm, the experimental results show that the IBFA algorithm can effectively shorten the time of image segmentation and improve the accuracy of image segmentation.
作者 田云 车亚琴 薛一兰 TIAN Yun;CHE Ya - qin;XUE Yi - lan(Xinzhou Teachers University, Xinzhou 034000, Chin)
机构地区 忻州师范学院
出处 《忻州师范学院学报》 2018年第2期49-53,84,共6页 Journal of Xinzhou Teachers University
基金 山西省自然科学基金项目(2014011019-3) 山西省重点实验室开放课题基金项目(2016002) 学院重点学科项目(XK201404) 院级青年基金项目(QN201409)
关键词 细菌觅食算法 粒子群算法 多阈值图像分割 bacterial foraging algorithm particle swarm algorithm muhilevel thresholding image segmentation
作者简介 田云(1982-),女,河北保定人,忻州师范学院计算机系讲师,硕士,从事智能计算、图像处理研究。
  • 相关文献

参考文献2

二级参考文献26

  • 1梅蓉,姜长生,陈谋.基于遗传算法的二维最小交叉熵的动态图像分割[J].电光与控制,2005,12(1):30-34. 被引量:13
  • 2KM Passino. Biomimicry of Bacterial Foraging for Distributed Op-timization and Control[ J]. IEEE Control System Magazine,2002,22(3):52-67.
  • 3Tripathy M,Mishra S,Lai L L,ei al. Transmission loss reductionbased on FACTS and bacteria foraging algorithm [ C ]. ParallelProblem Solving from Nature-PPSN. 2006 :222-231.
  • 4Chatteijee A,Matsuno F. Bacterial foraging techniques for solvingEKF-based SLAM problems [ C ]. Proc International Control Con-ference (Control 2006). Glasgow ,2006.
  • 5Ulagammai L, Vankatesh P,Kannan P S,et al. Application of bac-teria foraging technique trained and artificial and wavelet neuralnetworks in load forecasting [ J ]. Urocomputing, 2007,70 ( 16/18) :2659-2667.
  • 6S Mishra. Hybrid least-square adaptive bacterial foraging strategyfor harmonic estimation [ J ]. IEEE Trans Evolutionary Computa-tion,2005 ,152(3) :379-389.
  • 7Dong Hwa Kim, Jae Hoon Cho. Adaptive tuning of PID controllerfor multivariable system using bacterial foraging based optimization[C ]. Third International Atlantic Web Intelligence Conference.Lodz’2005,6:231-235.
  • 8Dong Hwa Kim,Ajith Abraham,Jae Hoon Cho. A hybrid geneticalgorithm and bacterial foraging approach for global optimization[J] . Information Sciences, 2007 ,(177) :3918-3937.
  • 9T Datta,I S Misra,B B Mangaraj,ei al. Improved adaptive bacteriaforaging algorithm in optimization of antenna array for faster conver-gence [J]. Progress in Electromagnetics Research,2008, (1) : 143-157.
  • 10Dasgupta S,Das S,Abraham A, et al. Adaptive computationalchemotaxis in bacterial foraging optimization : An analysis [ J ].IEEE Trans on Evolutionary Computation,2009,13(4) :919-941.

共引文献11

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部