期刊文献+

基于句法依赖规则和词性特征的情感词识别研究 被引量:7

Research on Sentiment Words Recognition Based on Syntactic Dependency Rules and POS Characteristics
在线阅读 下载PDF
导出
摘要 [目的/意义]针对传统的情感词词典构造方法对新词判断准确率不够理想,领域拓展性较差等问题,提出基于句法依赖规则和词性特征的情感词识别模型。[方法/过程]以京东商城iPhone 6s的商品评论为语料,通过使用Stanford Parser句法分析工具、情感种子词典、基于评论语料的人工标注情感词典、手机对象词典等外部数据,构建基于句法依赖规则以及词性特征的情感词识别模型。[结果/结论]实验表明,该模型能有效识别手机领域中的情感词,准确率达到84.89%,且无需人工干预。[局限]情感词识别匹配模型规模偏小,模型召回率仍有进一步提升的空间。此外实验只在手机领域下进行探究,并未涉及其他领域。 [Purpose/significance] Aiming at the problems that the traditional method for constructing the sentiment words dictionary has poor performances in new words recognition and field expansion,this paper proposes a sentiment words recognition model based on the syntactic dependence rules and part of speech( POS) features. [Method/process] Using the product reviews of iPhone 6s in Jingdong Mall as the corpus,the paper constructs sentiment words recognition model based on syntactic dependency rules and POS characteristics through Stanford Parser parsing tools,sentiment seed dictionaries,artificial annotation sentiment dictionaries based on comment corpus,mobile object dictionaries and other external data. [Result/conclusion]Experiments show that the model can effectively identify the sentiment words in mobile phone,with an accuracy rate of 84.89% without any human intervention. [Limitations] Sentiment words recognition matching model is small in scale,and recall rate of the model still has room for further improvement. In addition,the experiment is conducted only on mobile phones and does not cover other fields.
出处 《情报理论与实践》 CSSCI 北大核心 2018年第5期137-142,共6页 Information Studies:Theory & Application
基金 国家社会科学基金项目"用户评论情感分析及其在竞争情报服务中的应用研究"的成果之一 项目编号:11CTQ022
关键词 句法依赖关系 句法分析 词性标注 情感词识别 syntactic dependency rules syntactic analysis POS tag sentiment words recognition
作者简介 邓淑卿(ORCID:0000-0003—2820-6898),女,1994年生,硕士生。研究方向:网络用户情感分析等。;李玩伟,男,1994年生。研究方向:电商搜索引擎优化,搜索意图识别等。;徐健(ORCID:0000-0003-4886-4708,通讯作者),男,1977年生,博士,副教授。研究方向:网络用户情感分析,数据驱动的知识发现等。
  • 相关文献

参考文献12

二级参考文献227

  • 1孙茂松,黄昌宁,高海燕,方捷.中文姓名的自动辨识[J].中文信息学报,1995,9(2):16-27. 被引量:88
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:328
  • 3刘华.一种快速获取领域新词语的新方法[J].中文信息学报,2006,20(5):17-23. 被引量:14
  • 4何婷婷,张勇.基于质子串分解的中文术语自动抽取[J].计算机工程,2006,32(23):188-190. 被引量:21
  • 5黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:251
  • 6Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 7Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 8Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 9Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 10Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.

共引文献693

同被引文献91

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部