期刊文献+

单床方法模拟十床变压吸附提氢 被引量:2

Single bed simulation of ten-bed PSA in purification of hydrogen
在线阅读 下载PDF
导出
摘要 采用单床方法模拟了10床5组分变压吸附提H_2,考察了吸附剂配比和均压次数的影响。结果显示,在计算条件下,H_2摩尔分数99.955%,CO含量0.26 mmol/kmol,氢气回收率90%,与工业数据吻合;从吸附结束到顺放结束,负载曲线峰面动态移动,N_2和CO负载曲线有"驼峰"形成;逆放和冲洗2个步骤解吸的杂质量最多,再生结束后CH_4残余3.29%,残余比例最小;随着分子筛比例的增加,H_2纯度增加,CO含量降低,进入分子筛层CO_2量增加,分子筛比例70%较为合适;均压次数从2次增加至5次,H_2回收率从83.6%增加至90%,原料气处理能力从1.4 mol/s减小至0.999 mol/s。 A single bed method with non-isothermal model is used to simulate the purification of hydrogen from fivecomponent mixture by ten-bed pressure swing adsorption( PSA) facility. The effects of the ratio of adsorbents and the frequency of equal pressure on adsorption properties are studied. The results show that H2 purity reaches 99. 955 mol%with a CO content of 0. 26 mmol/kmol and the H2 recovery rate is 90% under the conditions of calculation,which are consistent with industrial data.The loading curve peak surface has been moving dynamically from the end of adsorption to the end of path-wise pressure release( PP),and the loading curves of both N2 and CO form "hump " shape. The discharge( D) step and PP2 step release the most impurities and the residual amount of methane is 3. 29% at the regeneration end,which is the least residual amount.With the increasing ratio of molecular sieve,H2 purity increases,CO content decreases,the amount of CO2 entering molecular sieve layer increases. The optimum ratio of molecular sieve is 70%.The H2 recovery rate increases from 83. 6% to 90% and the capacity of handing feed gases decreases from 1. 4 mol·s^-1 to 0. 999 mol·s^-1 when the frequency of equal pressure increases from 2 to 5.
作者 卜令兵 BU Ling-bing(Sichuan Tianyi Science and Technology- Co., Ltd., Chengdu 610225, China)
出处 《现代化工》 CAS CSCD 北大核心 2018年第4期215-219,共5页 Modern Chemical Industry
关键词 变压吸附 吸附 解吸 模拟 pressure swing adsorption adsorption desorption hydrogen simulation
作者简介 卜令兵(1978-),男,硕士,高级工程师,研究方向为变压吸附气体分离与净化,通讯联系人,bib_ustb@qq.com。
  • 相关文献

参考文献4

二级参考文献29

  • 1冯孝庭,古共伟.变压吸附分离技术推广应用研究[J].现代化工,1996,16(10):23-26. 被引量:3
  • 2Kenneth G,Teague J,Edgar T F.Predictive dynamic model of a small pressure swing adsorption air separation unit [J].Ind Eng Chem Res,1999,38(10):3761-3775.
  • 3Jiang L,Biegler L T.Simulation and optimization of pressure swing adsorption systems for air separation [J].AIChE,2003,49(5):1140-1157.
  • 4Ruthven D M,Farooq S,Knaebel K S.Pressure swing adsorption [M].New York:VCH Publishers,1994:226-230.
  • 5Rege S U,Yang R T.Limits for air separation by adsorption with LiX zeolite [J].Ind Eng Chem Res,1997,36(12):5358-5365.
  • 6Budner Z,Dula J,Podstawa W,et al.Study and modeling of the vacuum swing adsorption(VSA)process employed in the production of oxygen [J].Chem Eng Res Design,1999,77(5):405-412.
  • 7Beh C C K,Webley P A.The dynamic response and characteristics of an oxygen vacuum swing adsorption process to step perturbations [J].Adsorp Sci Technol,2003,21(4):319-347.
  • 8Ruthven D M.Principles of adsorption and adsorption processes[M].New York:John Wiley & Sons,1984:361-374.
  • 9Berlin N H.Method for providing an oxygen-enriched environment:US,3280536 [P].1966-10-25.
  • 10Warmuzinski K.Effect of pressure equalization on power requirements in PSA systems [J].Chem Eng Sci,2002,57(8):1475-1478.

共引文献12

同被引文献34

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部