摘要
讨论年龄结构SIQRS传染病模型,得出基本再生数?_0和带接种隔离再生数?(ψ)的表达式,证明了当?(ψ)<1时,无病平衡点局部渐近稳定;当?0<1时,无病平衡点全局渐近稳定;当?(ψ)>1时,无病平衡点不稳定,此时存在地方病平衡点.利用这些结果给出对于个体来说是一个年龄还是多个年龄接种的最优决策,并且给出了一次还是两次接种的最优决策.
The age structure of the SIQRS epidemic model is discussed, and the expressions for the basic reproductive numbers ?_0 and ?(ψ) with vaccination isolation reproductive numbers are derived. It is proved that when ?(ψ) 1, the disease-free equilibrium is locally asymptotically stable and unstable if ?(ψ) 1; when ?_0 1, the disease-free equilibrium is globally asymptotically stable; when ?(ψ) 1,there exists only endemic equilibrium state. The optimal age or ages at which an individual should be vaccinated is determined by applying the theoretical results to vaccination policies. It is shown that the optimal strategies can be either one-or two-age strategies.
作者
王改霞
刘纪轩
李学志
WANG Gaixia;LIU Jixuan;LI Xuezhi(College of Mathematics and Information, Xinyang University, Xinyang 4 64000, China;Basic Department, Aeronautic Sergeant College Air Force Engingeering University, Xinyang 464000, China;College of Mathematics and Physics, Anyang Institute of Techeology, Anyang 455000, China)
出处
《应用数学》
CSCD
北大核心
2018年第2期392-399,共8页
Mathematica Applicata
基金
国家自然科学基金(11271314)
河南省科技创新人才计划项目(144200510021)
河南省高等学校重点科研项目(17A110030)
关键词
年龄结构
隔离
接种
Age-structured
Isolation
Vaccination
作者简介
王改霞,女,汉族,河南人,讲师,研究方向:生物数学.