期刊文献+

基于WSN路由节点度模型的楼宇走廊定位算法 被引量:2

A Building Corridor Localization Algorithm Based on WSN Routing Node Degree Model
在线阅读 下载PDF
导出
摘要 针对现有的无线传感器网络(WSN)定位方法应用于结构复杂的楼宇走廊时,存在定位精度较低的问题,提出一种基于WSN路由节点度模型的楼宇走廊定位算法。该算法在路由节点度模型的基础上,先采用基于支持向量回归(SVR)的方法,用少量锚节点定位普通路由节点,达到间接增加锚节点覆盖率的目的;然后采用基于中垂线分割的方法定位随机分布在区域内的未知节点和移动终端。仿真表明:与传统SVR定位算法和核岭回归定位算法相比,所提出的算法精度提高了定位精度,满足室内定位精度要求(1 m^3 m),且降低了对锚节点数量的需求,可运用于楼宇走廊WSN定位。 Considering the poor localization accuracy when applying the existing localization algorithm to complicated building corridor,a localization algorithm based on WSN routing node degree model is proposed. On the basis of the routing node degree model,the proposed algorithm firstly uses support vector regression to locate the routing node based on a few beacon's location,so as to improve the rate of beacon coverage indirectly. Then,the proposed algorithm uses a way of perpendicular bisector division to locate the unknown nodes and the mobile terminals. Simulation shows that the proposed algorithm improves the localization accuracy compared with LSVR and KRR,satisfy the requirement of indoor localization( 1 m ~ 3 m),reduce the demand of anchor number,so it can be used in the localization of WSN for the building corridor.
作者 郝昭 李晓卉 丁月民 HAO Zhao1, LI Xiaohui1 , DING Yuemin2(1. College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 450081, China 2. College of computer and engineering, Tianfin University of Technology, Tianjin 300384, China)
出处 《传感技术学报》 CAS CSCD 北大核心 2017年第11期1700-1705,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61105070) 天津市科委面上项目(15JCYBJC52400) 国家国际科技合作专项项目(2013DFG72850)
关键词 无线传感网络 距离无关定位 支持向量回归 区域分割 凹形狭长空间 wireless sensor network range free localization support-vector regression region division concave longnarrow space
作者简介 郝昭(1994-),男,湖北十堰人,硕士研究生,研究方向为无线传感器网络,504489929@qq.com;李晓卉(1978-),女,湖北红安人,博士、教授、硕士导师,研究方向为复杂网络理论,无线传感器网络技术,智能家居控制,智能电网需求响应理论及应用等,lixiaohui@Wust.edu.cn。
  • 相关文献

参考文献4

二级参考文献41

  • 1刘成.LBS定位技术研究与发展现状[J].导航定位学报,2013,1(1):78-83. 被引量:54
  • 2Imad,Jawhar,吴杰.QoS Support in TDMA-Based Mobile Ad Hoc Networks[J].Journal of Computer Science & Technology,2005,20(6):797-810. 被引量:3
  • 3湛浩旻,孙长嵩,吴珊,李冬艳.ZigBee技术在煤矿井下救援系统中的应用[J].计算机工程与应用,2006,42(24):181-183. 被引量:62
  • 4王超楠,丁恩杰,周强,徐勇军,李晓维.应用无线传感器网络快速定位矿井配电网故障的方法[J].计算机辅助设计与图形学学报,2007,19(3):392-397. 被引量:2
  • 5Debessu Y G.Wu H C. Modified Turbo Decoder for Location inSingleFrequency Networks[C] / / IEEE International Symposiumon BMSB.2012:1-5.
  • 6Yi T T.Fang Z Y.Li R X. RMADVHOP:An Improved DVHOPLocalization Algorithm[C] / / Proceedings of the 2010 Seventh International Conference on Information Technology:New Generation.LasVegas.Nevada.2010:939-943.
  • 7Areekul V, Boonchaiseree N. Fast Focal Point Localization Algo- rithm for Finger Print Registration [J]. IEEE Conferenceon Indus- trial Electronics & Applications, 2008(3) :2089-2094.
  • 8Josu6Iglesias, Ana M Bernardos, Jos6 R Casar, et al. ABayesian Strategy to Enhance the Performance of Indoor Localizati on Sys- tems[J]. Advancesin Intelligent & Soft Computing, 2011.
  • 9Suroso D J, Cherntanomwong P, Sooraksa P, et al. Finger Print- Based Technique for Indoor Localization in Wireless Sensor Net- works Using Fuzzy C-Meansclusteringalgorithm [C]//Intelligent Signal Processing and Communications Systems (ISPACS), 2011 International Symposiumon IEEE, 2011,1 -5.
  • 10Paul A S, Wan E. RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers [J].IEEEJournal of Select- ed Topicsin Signal Processing, 2009,3 (5) : 860-873.

共引文献18

同被引文献29

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部