期刊文献+

基于贝叶斯框架融合深度信息的显著性检测 被引量:7

Saliency detection method fused depth information based on Bayesian framework
在线阅读 下载PDF
导出
摘要 复杂背景下,传统显著性检测方法经常遭遇检测结果不稳定和准确率低的问题。针对这些问题,提出一种基于贝叶斯框架融合深度信息的显著性检测方法。首先利用全局对比、局部对比和前景背景对比方法获取颜色显著图,并利用非均质中心-邻居差异的深度对比方法获取深度显著图。其次采用贝叶斯模型融合颜色显著图和深度显著图,获得输出显著图。实验结果表明,本文的方法能有效检测出复杂背景下的显著目标,并在公开的NLPR-RGBD数据集和NJU-DS400数据集上取得较高检测精确度。 In the complex background, the traditional saliency detection methods often encounter the problems of unstable detection results and low accuracy. To address this problem, a saliency detection method fused depth information based on Bayesian framework is proposed. Firstly, the color saliency map is obtained by using a variety of contrast methods which includes global contrast, local contrast and foreground-background contrast, and the depth saliency map is obtained by using the depth contrast method based on the anisotropic center-surround difference. Secondly, using the Bayesian model to fuse the color-based saliency map and the depth-based saliency map. The experimental results show that the proposed method can effectively detect the salient targets under complex background and achieve higher detection accuracy on the published NLPR-RGBD dataset and NJU-DS400 dataset.
作者 赵宏伟 何劲松 Zhao Hongwei, He Jinsong(School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, Chin)
出处 《光电工程》 CAS CSCD 北大核心 2018年第2期8-15,共8页 Opto-Electronic Engineering
关键词 显著性检测 颜色对比度 深度对比度 贝叶斯融合 saliency detection color contrast depth contrast Bayesian fusion
作者简介 赵宏伟(1991-),女,硕士研究生,主要从事模式识别的研究。E-mail:SA023046@mail.ustc.edu.cn
  • 相关文献

参考文献3

二级参考文献22

  • 1H Masuzawa, J Miura. Observation planning for efficient environment information summarization [ C ]. IEEE RSJ International ('onference on Intelligent Robots and Systems, 2009. 5794 5800.
  • 2S Ekvall, D Kragic. Receptive field cooccurrence histograms for object detection [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems. 2005. 84-89.
  • 3C Choi. H I Christensen. Cognitive vision for efficient scene processing and object categorization in highly cluttered environments [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems, 2009. 4267-4274.
  • 4K A Ehinger, S B Hidalgo, A Torralba, et al: Modelling search for people in 900 scenes: A combined source model of eye guidance[J]. Visual Cognition, 2009, 17(6-7): 945-978.
  • 5A Borji, D N Sihite, L hti. Quantitative analysis of human- model agreement in visual saliency modeling: A comparative study[J]. IEEE Transactions on Image Processing, 2013, 22 (1) : 55-69.
  • 6A Borji, L Itti. State-of-the-art in visual attention modeling[J] IEEE Transactions on Pattern Analysis and Machine Intelligence 2013, 35(1): 185-207.
  • 7D Walther. Color Opponencies for Bottom-up Attention[D] Pasadena: California Institute of Technology, 2006. 98-99.
  • 8王卫华,李志军,何艳,等.一种基于兴趣区提取的红外搜索系统目标实时检测算法[J].中国激光,2013,39(ii):1109001.
  • 9J Theeuwes. Feature-based attention: It is all bottom-up priming[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1628): 20130055.
  • 10S Goferman, M L Zelnik, A Tal. Context aware saliency detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10) : 1915-1926.

共引文献18

同被引文献42

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部