期刊文献+

太阳能燃气轮机发电技术综述 被引量:9

Solar gas turbine power generation technology:a review
在线阅读 下载PDF
导出
摘要 在目前能源资源日趋紧张、环境压力逐渐增加的情况下,发挥可再生清洁能源的优势,发展新型发电技术尤为重要。本文介绍了太阳能燃气轮机发电系统的工作过程、项目试验以及关键技术的研究现状,对集热、储热、回热和控制策略等关键技术进行了总结。针对关键技术指出:管式和容积式吸热器可将空气加热至600~1 000℃高温,且布置在透平机入口前技术优势更为明显;显热储热材料加热后温度可升至1 000℃以上,化学储热材料储放热温度稳定且储热密度高,可达0.5~1.0 k W·h/kg;回热器以主表面式和板翅式为主,以提高能源利用效率;控制策略需要协同系统各部件,其优化方案仍需进一步研究。 With the increasing pressure of energy shortage and the environment pollution, it's important to take the advantage of the renewable clean energy for new power generation technology. This study introduces the working process, project experiments and key technologies of the solar gas turbine power generation system, and summarizes the key technologies: solar heat collection, heat storage, heat recovery and control strategy. Tubular and volumetric receiver can heat air to the high temperature(600~1 000 ℃), and is better to be arranged before the inlet of turbine. Sensible storage material can be heated to above 1 000 ℃, while chemical storage material charging/discharging temperature is stable and has high heat storage density(0.5~1.0(k W·h)/kg). Primary and plate-fin recuperators are widely used to improve energy efficiency. Different parts of system are coordinated by control strategy, which need be optimized.
出处 《热力发电》 CAS 北大核心 2018年第2期6-15,62,共11页 Thermal Power Generation
基金 国家重点研发计划项目(2016YFE0124700)~~
关键词 太阳能 燃气轮机 发电技术 空气吸热器 储热 回热 控制策略 综述 solar energy, gas turbine, power generation technology, air receiver, heat storage, heat recovery, control strategy, review
作者简介 刘焕磊(1992-),男,硕士研究生,主要研究方向为太阳能热发电技术,zjulhl@zju.edu.cn.;通讯作者简介:肖刚(1979-),男,博士,教授、博士生导师,xiaogangtianmen@zju.edu.cn.
  • 相关文献

参考文献11

二级参考文献79

  • 1韩巍,金红光,林汝谋.化石燃料化学能释放的新认识[J].自然科学进展,2005,15(1):84-89. 被引量:7
  • 2陈子乾,郑宏飞,何开岩,杨英俊,李正良.一种新型多效内回热式太阳能海水淡化装置[J].北京理工大学学报,2005,25(9):761-764. 被引量:6
  • 3蔡睿贤 金红光 林汝谋.能源动力系统与环境协调相容的难题[A].李喜先主编.21世纪100个交叉科学难题[M].北京:科学出版社,2005.366-371.
  • 4S D Odeh, G L Morrison, M Behnia. Modelling of Parabolic Trough Direct Steam Generation Solar Collectors. Solar Energy, 1998, 62(6): 395-406
  • 5P V Zedtwitz, J Petrasch, D Trommer, et al, Hydrogen Production Via the Solar Thermal Decarbonization of Fossil Fuels. Solar Energy, 2005, 80(10): 1333-1337
  • 6Hui Hong, Hongguang Jin, Jun Ji, et al. Solar Thermal Power Cycle with Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy. Solar Energy, 2005, 78(1):49-58
  • 7Masaru Ishida. Process System Synthesis and Available Information. In: TAIES'97, Beijing Thermodynamic Analysis and Improvement of Energy Systems. 1997
  • 8Nakhamkin M, Pelini R, Patel M. Power augmenta- tion of heavy duty and two-shaft small and medium capacity combustion turbines with application of hu- mid air injection and dry air injection technologies[C]//Proceedings of ASME POWER 2004. Baltimore, Maryland, USA: [ s. n.], 2004: POWER2004- 52095, 301 306.
  • 9Jonsson M, Yan J. Humidified gas turbines-A review of proposed and implemented cycles[J]. Ener- gy, 2005, 30: 1013-1078.
  • 10Gallo W. A comparison between the HAT cycle and other gas-turbine based cycles: Efficiency, specific power and water consumption[J]. Energy Conversion and Management, 1997, 38(15-17) : 1595-1604.

共引文献373

同被引文献102

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部