期刊文献+

面向公共安全的时空数据挖掘综述 被引量:10

A survey of data mining on spatial-temporal user behavior data for public safety
在线阅读 下载PDF
导出
摘要 随着各种手持无线设备及传感器的普及,大量的具有时间和空间属性的轨迹数据在不间断地产生。这些不同来源的轨迹数据记录了个体在时间和空间上的活动,从微观和宏观揭示出个人和团体的活动规律,对研究人群行为及城市管理,特别是城市公共安全管理方面,具有重要的意义。以公共安全管理为主要目标,分4个方面调研了相关的研究工作,并分别给出了笔者的研究进展。使用了2类比较有代表性的数据,第1类是智能手机的时间、空间轨迹数据;第2类是城市公共交通卡的换乘数据。第1类是从"点"上分析挖掘个体或者群体的活动规律,而第2类数据则是从"线"上发现人群的聚散规律。基于第1类数据,针对"个体的发现"介绍了相关工作;对于第2类数据,分别从短时和突发2个方面,发现具有潜在危害性的事件,从而向有关部门提供预测和预警,防范该区域可能出现的公共安全事件。比较了各类模型包括经典的时序数学模型ARIMA(autoregressive integrated moving average model)和SARIMA(seasonal autoregressive integrated moving average)、机器学习和神经网络模型SVR(support vector re-gression)、NN(neural networks)、和LSTM(long short-term memorg),发现笔者的模型在短时客流预测方面可以最多提高27.78%,突发客流预测精度可以最高提高到14.68倍。 With the popularity of smart phones and wireless sensors,large amount of data with timestamps and geo-locations( spatial-temporal) has been produced continuously. This spatial-temporal data records individual behaviors by time and locations,shows macro and micro behavior patterns of people by statistical methods,which is very important for studying the human behavior,especially significant for managing the public safety for city administrators. In this paper,we survey the state-of-the-art research of the human behavior mining for public safety on spatial-temporal data in four aspects,and provide our work in each aspect respectively. We discussed two types of spatial-temporal data,one is smartphone data,and the other is smart card data of public transit. The former shows the individual and crowd behavior from"point"view,and the latter shows the crowd behavior pattern from"line"view. With the former data,we discussed how to discover suspect individ-uals; with the latter data,we introduced how to find harmful events from short-term and burst passenger traffic,so as to provide the early warning to administration if necessary. We compared our model with existing ones such as ARIMA,SARIMA,SVR,NN,and LSTM. The result shows that our model can reduce the error up to 27. 78% for short-term traffic prediction,and up to 14. 68 x for burst traffic prediction.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2018年第1期40-52,共13页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61371084)~~
关键词 时空分析 大数据 异常发现 数据预测 spatial-temporal analysis big data outlier detection prediction
作者简介 王永坤(1977-),男,山东诸城人,博士,主要研究方向为大规模分布式系统设计与实践、可扩展非结构化数据库理论、多源数据的情报综合与分析等.Email:ykw@sjtu.edu.cn.;王海洋(1990-),男,黑龙江哈尔滨人,博士生,研究方向为多源异构时空数据挖掘.Email:010350180@sjtu.edu.cn.;潘平峻(1994-),男,浙江台州人,硕士生,研究方向为多源异构时空数据挖掘.Email:panpingjun@sjtu.edu.cn.;李龙元(1993-),男,陕西汉中人,博士生,研究方向为多源异构时空数据挖掘.Email:jeffli@sjtu.edu.cn.;金耀辉(1971-),男,安徽安庆人,教授,博士,博士生导师,研究方向为云计算网络架构、数据管理与机器学习、时空数据挖掘与应用、公众参与的开放创新等.Email:jinyh@sjtu.edu.cn.
  • 相关文献

参考文献3

二级参考文献32

  • 1张铭,王富章,李平.城市轨道交通网络化运营辅助决策与应急平台[J].中国铁道科学,2012,33(1):113-120. 被引量:26
  • 2王富章,李平,刘德山.城市轨道交通智能综合监控系统及关键技术[J].中国铁路,2004(8):54-57. 被引量:15
  • 3谢玉洁,韩宝明,许惠花.城市轨道交通与地面常规公交的客运一体化[J].都市快轨交通,2006,19(1):32-34. 被引量:31
  • 4吴秀芹;张洪岩.ArcGIS 9地理信息系统应用与实践[M]{H}北京:清华大学出版社,2007.
  • 5Zhang M;Li P;W-ang F Z.The emergency decision support platform of urban rail transit based on information sharing and digitalized plan[A]{H}北京,2010287.
  • 6Yu Liu,Chaogui Kang,Song Gao,Yu Xiao,Yuan Tian.Understanding intra-urban trip patterns from taxi trajectory data[J]. Journal of Geographical Systems . 2012 (4)
  • 7Andreas Kaltenbrunner,Rodrigo Meza,Jens Grivolla,Joan Codina,Rafael Banchs.Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive and Mobile Computing . 2010 (4)
  • 8Woo-Sung Jung,Fengzhong Wang,H. Eugene Stanley.??Gravity model in the Korean highway(J)EPL (Europhysics Letters) . 2008 (4)
  • 9Froehlich J,Neumann J,Oliver N.Sensing and predicting the pulse of the city through shared bicycling. International Joint Conferences on Artificial Intelligence . 2009
  • 10Meloni Sandro,Perra Nicola,Arenas Alex,Gómez Sergio,Moreno Yamir,Vespignani Alessandro.Modeling human mobility responses to the large-scale spreading of infectious diseases. Scientific reports . 2012

共引文献21

同被引文献95

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部