期刊文献+

基于FRFT的盲源分离算法研究

Research into Blind Source Separation Algorithm Based on FRFT
在线阅读 下载PDF
导出
摘要 针对强噪声背景下线性调频混叠信号,提出了一种结合分数阶傅里叶变换的盲源分离算法,能够有效提升强噪声背景下的信号提取性能。首先将混叠信号转换到分数阶傅里叶域并估计噪声功率谱,然后在最优阶域下对混叠信号使用谱减法,最后采用快速独立分量分析算法对混叠信号进行盲分离并平滑滤波。仿真结果表明所提算法有效提升了强噪声背景下线性调频信号的盲分离性能,对比2种算法的分离波形以及信号均方误差,该算法的分离效果较独立分量分析算法有明显改善。 Aiming at linear frequency modulation (LFM) mixed signals in the background of strong noise,this paper puts forward a blind source separation algorithm combined with fractional Fourier transform,which can effectively improve the signal extraction performance under the strong noise background. Firstly, the mixed signal is transformed into the fractional Fourier domain and the noise power spectrum is estimated. Then, the spectral subtraction is used for the mixed signal under the optimal order domain. Finally, the fast independent component analysis algorithm is used to perform the blind separation and smooth filtering for the mixed signals. Simulation results show that the proposed algorithm can effectively improve the blind separation performance of LFM signal in the background of strong noise. The separation waveform and signal mean square error of two algorithms are compared, and the separation effect of proposed algorithm is improved obviously compared with the independent component analysis algorithm.
机构地区 海军工程大学
出处 《舰船电子对抗》 2017年第6期75-79,90,共6页 Shipboard Electronic Countermeasure
基金 国家自然科学基金 项目编号:61601491
关键词 线性调频信号 分数阶傅里叶变换 最优阶 谱减法 快速独立分量分析 linear frequency modulation signal fractional Fourier transform optimal order subtraction of spectrum fast independent component analysis
  • 相关文献

参考文献4

二级参考文献46

  • 1刘小河,王建英,杨美英.基于分数阶傅里叶变换的宽带LFM相干信号的DOA估计[J].数据采集与处理,2008,23(5):547-550. 被引量:7
  • 2杨军,王民胜,保铮.一种ISAR多目标实时成像方法[J].电子学报,1995,23(4):1-5. 被引量:8
  • 3沈显祥,叶瑞青,唐斌,杨建宇.基于欠采样的宽带线性调频信号参数估计[J].电波科学学报,2007,22(1):43-46. 被引量:17
  • 4Wood J C, Barry D T. Radon transformation of time- frequency distributions for analysis of multicomponent sig- nals. IEEE Transactions on SignM Processing, 1994, 42(11): 3166-3177.
  • 5Guo Q, Li Y J, Wang C H. A new nlethod of detecting multi- component LFM signals based on blind signal processing. .lournal of Computers, 2011, 6(9): 1976-1982.
  • 6Millioz F, Davies M. Sparse detection in the chirplet trans- form: application to FMCW radar signals. IEEE Transac- tions on Signal Processizlg, 2012, 60(6): 2800-2813.
  • 7Cand~s E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 8Shi G M, Lin J, Chen X Y, Qi F, Liu D H, Zhang L. UWB echo signal detection with ultra-low rate sampling based on compressed sensing. IEEE Transactions on Circuits and Sys- tems lI: Express Brie~s, 2008, 55(4): ar,~-asa.
  • 9Gleichman S, Eldar Y C. Blind compressed sensing. IEEE Transactions on Information Theory, 2011, 57(10): 6958- 6975.
  • 10Gleichinan S, Eldar Y C. Blind compressed sensing: the- ory. In: Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation. St. Malo, France: Springer, 2010. 386-393.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部