期刊文献+

静电与流体作用下微米颗粒团迁移机理研究 被引量:2

Evolution of Migrating Micro-Particle Cloud With Hydrodynamic and Electrostatic Interactions
原文传递
导出
摘要 由于带电微米颗粒之间存在静电、流体相互作用,颗粒团的迁移行为与单颗粒截然不同。本文以静电除尘器(ESP)中带电颗粒团迁移沉积为背景,首先探讨流体有限惯性对单颗粒扰流流场的影响,在此基础上利用Oseen动力学计算颗粒团迁移过程中的颗粒团形状演化机理。计算发现,在颗粒间流体相互作用下,颗粒团由初始的球形经历扁化、拖尾、破碎等过程,最后形成子颗粒团。随着颗粒荷电量增加,颗粒团迁移由原本的破碎模式转变为较为稳定的各向同性膨胀模式。迁移模式转变能够用荷电参数κ_q定量描述。最后,我们发现颗粒团破碎形式与颗粒初始分布不均匀性有关,并且利用Lyapunov指数定量分析了颗粒团形状不稳定性。 Due to the hydrodynamic and electrostatic interactions among micro-particles, the collective behavior of a migrating particle cloud is totally different from that of a single particle. In this paper, the effect of fluid inertia is first discussed based on the analysis of disturbance field of a single particle. Then the evolution of a migrating cloud with both electrostatic and hydrodynamic interactions is numerically investigated by Oseen dynamics. Results indicate, with a weak long-range Coulomb repulsion, the cloud is seen to flatten into a toroidal configuration and eventually breaks up into small clouds. Increasing the repulsion can delay or even totally prevent the breakup. A dimensionless charge parameter, κq, is constructed to quantify this transition. Finally, we show that the breakup of the cloud is strongly related to the initial inhomogeneity of the particle concentration. And the chaotic characteristic of the cloud is further quantified by Lyapunov exponent.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第1期114-118,共5页 Journal of Engineering Thermophysics
基金 国家重点基础研究发展计划资助项目(No.2016YFB0600602)
关键词 微米颗粒 静电除尘 流体相互作用 电迁移速度 micro-particle ESP hydrodynamic interaction migrating velocity
作者简介 陈晟(1992),男,博士研究生,从事微米颗粒迁移沉积研究。;通信作者:李水清,教授,lishuiqing@tsingbua.edu.cn
  • 相关文献

参考文献3

二级参考文献24

  • 1公利平,盛昌栋,沈湘林.超细颗粒在交变电场中团聚过程的数值模拟[J].工程热物理学报,2007,28(4):705-707. 被引量:6
  • 2Li S Q, Marshall J S. Discrete-Element Simulation of Micro-Particle Deposition on a Cylindrical Fiber in an Array. Journal of Aerosol Science, 2007, 38(10): 1031-1046.
  • 3Butt H J, Cappella B, Kappl M. Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Surface Science Reports, 2005, 59(1-6): 1-152.
  • 4Digital Instruments, Santa Barbara, CA.
  • 5Johnson K L, Kendall K, Roberts A D. Surface Energy and the Contact of Elastic Solids. Proceedings of the Royal Society of London A, 1971, 324:301-313.
  • 6Hooton J C, German C S, Davies M C, et al. A Compar- ison of Morphology and Surface Energy Characteristics of Sulfathiazole Polymorphs Based upon Single Particle Studies. European Journal of Pharmaceutical Science, 2006, 28(4): 315-324.
  • 7Schaefer D M, Carpenter M, Gady B, et al. Surface Roughness and its Influence on Particle Adhesion Using Atomic Force Techniques. Journal of Adhesion Science and Technology, 1995, 9(8): 1049-1062.
  • 8Calle C I.Mazumder M K,Immer C D.et al.Controlled Particle Removal From Surfaces by Electrodynamic Methods for Terrestrial,Lunar and Martian Environmental Conditions[J].Journal of Physics:Conference Series. 2008.142:012073.
  • 9YU A B,FENG C L,ZOU R P,et al.On the Relationship Between Porosity and Interparticle Forces[J],Powder Technology,2003,130:70-76.
  • 10Yang R Y.Zou R P.Yu A B.Effect of Material Properties on the Packing of Fine Particles[J].Journal of applied physics,2003,94(5):3025-3034.

共引文献28

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部