期刊文献+

基于数值模拟的方式研究氩气-氢气等离子体射流物理特性 被引量:1

Modeling and Numerical Simulation of Properties of Ar-H_2 Plasma Jet
在线阅读 下载PDF
导出
摘要 对氩气-氢气等离子体射流采用基于流体动力学的基本方程进行数值模拟,探讨不同氢气含量对氩气-氢气等离子体射流的温度场与密度的影响,研究了氩气-氢气等离子体射流的特点并分析了氩气-氢气等离子体射流温度场变化的原因。结果表明:氢气含量的增加提高了等离子体射流的温度,降低了等离子体射流的密度;氩气-氢气等离子体射流在喷枪出口位置发生了流体的卷吸作用和射流的压缩效应;氩气-氢气等离子体射流主要以热扩散的形式进行扩散。 The temperature filed and flow field of the Ar-H2 plasma spraying jetwas mathematically formulated with k-ε turbulent fluid model,theoretically analyzed in fluid dynamics and numerically simulated with ANSYS software. The influence of the H2-content on the temperature field and density of Ar-H2 plasma jet was investigated. The simulated results show that addition of H2 significantly increased the temperature and decreased the density of the plasma jet; and that the fluid entrainment and jet compression occurred at the nozzle of the Ar-H2 plasma spraying jet. In addition,thermal diffusion was found to be mainly responsible for the spreading of the argon-hydrogen plasma spraying jet.
出处 《真空科学与技术学报》 CSCD 北大核心 2017年第12期1183-1189,共7页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(51301192) 研究生创新项目(16KY0511)
关键词 数值模拟 物理特性 流体动力学 氩气-氢气等离子体射流 卷吸作用 Numerical simulation, Physical properties, Fluid dynamics, Argon-hydrogen plasma jet, Entrainment
作者简介 联系人:Tel:(021)67791474;E-mail:yuanjh@sues.edu.cn
  • 相关文献

参考文献2

二级参考文献44

  • 1Mohamed A A, Suddala S, Malik M A, et al. Ozone generation in an atmospheric pressure micro-plasma jet in air[C]// The 31st IEEE Int Conf on Plasma Sci. Baltimore, Maryland, USA: IEEE, 2004.
  • 2Teschke M, Kedzierski J, Finantu-Dinu E G, et al. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2005, 33 (2): 310-311.
  • 3Cheng C, Zhang L, Zhan R. Surface modification of polymer fi- bre by the new atmospheric pressure cold plasma jet[J]. Surface & Coatings Tech, 2005, 200(24): 6659-6665.
  • 4O'Connell D, Cox L J, Hyland W B, et al. Cold atmospheric pressure plasma jet interactions with plasmid DNA[J]. Applied Physics Letters, 2011, 98(4): 043701.
  • 5Jeong J Y, Babayan S E, Tu V J, et al, Etching materials with an atmospheric-pressure plasma jet[J]. Plasma Source Science Technology, 1998, 7(3): 282-285.
  • 6Stoffels E, Kieft I E, Sladek R E J. Superficial treatment of mammalian ceils using plasma needle[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 2908-2913.
  • 7Sladek R E J, Stoffels E, Walraven R, et al. Plasma treatment of dental eavities: a feasibility study[J]. IEEE Transactions on Plasma Science, 2004, 32(4) : 1540-1543.
  • 8Leveille V, Coulombe S. Design and preliminary characteriza- tion of a miniature pulsed RF APGD torch with downstream in- jection of the source of reactive species[J]. Plasma Sources Sci- ence Technology, 2005, 14(3): 467-476.
  • 9Stonies R, Schermer S, Voges E, et al. A new small microwave plasma torch[J]. Plasma Sources Science Technology, 2004, 13 (4) : 604-611.
  • 10Walsh J L, Shi J J, Kong M G. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets[J]. Applied Physics Letters, 2006, 88(17): 171501.

共引文献89

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部