期刊文献+

基于贝叶斯最优化的Xgboost算法的改进及应用 被引量:21

The Improvement and Application of Xgboost Method Based on the Bayesian Optimization
在线阅读 下载PDF
导出
摘要 在使用Xgboost框架时,经常涉及各种参数的调整,并且参数组合的选取对模型的分类性能影响较大.传统的参数寻优方法,通常先导出一个惩罚函数,然后运用经验或者穷举法调整参数值来最大化或最小化这个惩罚函数,但是经常会遇到某个模型没有一个显式的表达式情况.这类模型的参数寻优就非常麻烦,同时又会给算法带来一定的不确定性和随机性.本文基于高斯法(GP)的贝叶斯最优化算法对Xgboost框架进行参数寻优,提出了一种新的算法GP_Xgboost,并通过多组数值进行实验.结果表明本文改进的算法分类效果要优于人工调优和穷举法,从而证明了该算法的可行性和有效性. When the Xgboost framework is in use, it is often involved in the adjustment of various parameters, and the selection of parameters has a great influence on the classification performance of the model. The traditional parameter optimization method usually first derives a penalty function, and then the empirical or exhaustive method is used to adjust the parameter value to maximize or minimize the penalty function, but often encounters a model without an explicit expression. The optimization of the parameters of this model is very troublesome, also bringing some uncertainty and randomness to the algorithm. The Bayesian optimization algorithm based on Gaussian method(GP) is used to optimize the parameters of the Xgboost framework. A new algorithm, GP_Xgboost, is proposed and experimented by multiple sets of numerical values. The results show that the proposed algorithm is superior to the manual tuning and exhaustive method, which proves the feasibility and effectiveness of the proposed algorithm.
出处 《广东工业大学学报》 CAS 2018年第1期23-28,共6页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(11401115) 广州市科技计划项目(201707010435)
关键词 Xgboost算法 模型参数 贝叶斯最优化 参数寻优 Xgboost algorithm model parameters Bayesian optimization parameter optimization
作者简介 李叶紫(1993-),女,硕士研究生,主要研究方向为算法设计与分析、图像处理.;通信作者:韩晓卓(1978-),女,副教授,主要研究方向为生物数学,算法设计与分析.E-mail:hanxzh03@163.com
  • 相关文献

参考文献7

二级参考文献173

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:57
  • 3林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:38
  • 4Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd Edition. San Francisco, CA: Morgan Kaufmann, 2005.
  • 5Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997, 29(2/3): 131-163.
  • 6Greiner R, Zhou W. Structural extension to logistic regres- sion= Discriminative parameter learning of belief net classifi- ers//Proceedings of the 18th Annual National Conference on Artificial Intelligence ( AAAI 2002). Edmonton, Canada, 2002:167-173.
  • 7Greiner R, Su X, Shen B et al. Structural extension to logis- tic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 2005, 59(3): 297-322.
  • 8Chickering D M, Heckerman D, Meek C. Large sample learning of Bayesian networks is NP-hard. The Journal of Machine Learning Research, 2004, 5 : 1287-1330.
  • 9Tillman R E. Structure learning with independent non-identi cally distributed data//Proceedings of the 26th Annual Inter national Conference on Machine Learning. New York, 2009: 1041-1048.
  • 10Zheng Z, Webb G I. Lazy learning of Bayesian rules. Machine Learning, 2000, 41(1): 53-84.

共引文献1226

同被引文献216

引证文献21

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部