期刊文献+

利用鞍点定理研究带有阻尼项的二阶系统的周期解

Periodic Solutions for the Second Order Systems with Damping Term by the Saddle Point Theorem
在线阅读 下载PDF
导出
摘要 利用鞍点定理研究带有阻尼项q(t)u?(t)的二阶系统的周期解的存在性。在非线性项F(t,x)=G(x)+H(t,x)满足条件(A)及分别满足一定条件下,获得了一个新的周期解的存在性定理,推广了已有文献的一些结果。 The existence of periodic solutions of the second order systems with damping term is studied by the saddle point theorem. When the nonlinear term F(t,x)= G(x)+ H(t,x) satisfies condition(A) and G(x),H(t,x) satisfy many conditions. One new existence theorem of periodic solution is obtained, and the result improves some of the corresponding existing results.
出处 《科技通报》 北大核心 2017年第12期50-53,共4页 Bulletin of Science and Technology
基金 国家自然科学基金项目(11261002) 云南省科技厅应用基础项目(2011FZ167)
关键词 周期解 鞍点定理 二阶系统 periodic solutions the saddle point theorem the second order systems
作者简介 王少敏(1975-),女,云南大理人,硕士,副教授,主要从事非线性分析的研究.E-mail:shaominwang2006@126.com.
  • 相关文献

参考文献1

二级参考文献8

  • 1Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York: Springer- Verlag, 1989.
  • 2Tang C L. Periodic solutions of non-autonomous second order systems. Journal of Mathematical Analysis and Applications, 1996, 202(2): 465-469.
  • 3Tang C L. Periodic solutions for non-autonomous Proc. Amer. Math. Soc., 1998, 126: 3263-3270.
  • 4Tang C L. Existence and multiplicity of periodic systems. Nonlinear Anal., 1998, 32: 299-304.
  • 5Wu X P, Tang C L. Periodic solution of a class of non-autonomous second order systems. Journal of Mathematical Analysis and Applications, 1999, 236(2): 227-235.
  • 6Wu X. Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems. Nonlinear Anal., 2004, 58(7-8): 899-907.
  • 7Ma J, Tang C L. Periodic solutions for some nonautonomous second-order systems. Journal of Mathematical Analysis and Applications, 2002, 275(2): 482-494.
  • 8Ye Y W, Tang C L. Periodic solutions for some non-autonomous second order Hamiltonian systems. Journal of Mathematical Analysis and Applications, 2008, 344: 462-471.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部