期刊文献+

子群的m-嵌入性质对p-模子群结构的影响

The influence of m-embedded properties of subgroups on the structure of p-modular subgroups
原文传递
导出
摘要 利用Sylow p-子群的极大子群的m-嵌入性质研究群G的p-模子群O^p(G),并得到G的主因子结构.主要证明了如下结果:1)若G的Sylow p-子群的每个极大子群在G中是m-嵌入的,则G是p-超可解的或Op(G)=G;2)设E■G,若E的Sylow p-子群的每个极大子群在G中是m-嵌入的,且O^p(G)<G,则|E_p|=p或E之下的每一个G-主因子A/B均满足下列情形之一:(1)A/B≤ΦG(/B);(2)A/B是p′-群;(3)|A/B|=p. In this paper,the influence of m-embedded subgroups on the structure of p-modular subgroups is discussed and the structure of chief factors of G is obtained.The following results are mainly shown:1)If every maximal subgroup of Sylow p-subgroup of G is m-embedded in G,then G is p-supersolvable or O^p(G)=G;2)Let E■G,if every maximal subgroup of Sylow p-subgroup of E is m-embedded in G and O^p(G)<G,then|E_p|=por every G-chief factor A/B below E satisfies one of the following conditions:(1) A/B≤Φ(G/B);(2) A/Bis a p′-group;(3) |A/B|=p.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2017年第3期1-3,8,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11271016) 伊犁师范学院科研重点项目(2016YSZD06)
关键词 m-嵌入子群 p-模子群 P-超可解群 主因子 m-embedded subgroup p-modular subgroup p-supersolvable group chief factor
作者简介 联系人,E-mail:dqgbj2008@163.com.
  • 相关文献

参考文献3

二级参考文献14

  • 1樊恽,郭秀云,岑嘉评.关于子群的两种广义正规性的注记[J].数学年刊(A辑),2006,27(2):169-176. 被引量:33
  • 2Chinese Annals of Mathematics[J].Chinese Annals of Mathematics,Series B,2006,27(4). 被引量:1
  • 3BUCKLEY J. Finite groups whose minimal subgroups are normal [J]. Math Z, 1970, 116(1) : 15-17.
  • 4SRINIVASAN S. Two sufficient conditions for supersolvability of finite groups [J]. Isr J Math, 1980, 35(3): 210 -214.
  • 5WANG Yanming. (2normality of groups and its properties [J]. J Algebra, 1996, 180(3):954-965.
  • 6GUO Xiuyun, SHUM K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups [J]. Arch Math, 2003, 80: 561-569.
  • 7JARADEN J J, SKIBA A N. On c-normal subgroups of finite groups [J]. Commun Algebra, 2007, 35 (11) : 3776-3788.
  • 8徐明曜.有限群导引:上册[M].北京:科学出版社,2012:62.
  • 9MIAO Long, LEMPKEN W. On weakly M-supplemented primary subgroups of finite groups [J]. Turk J Math, 2010, 34(4): 489-500.
  • 10ZHU Lujin, MIAO Long. On .~-supplemented primary subgroups of finite groups [J]. Turk J Math, 2012, 36(1): 67-76.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部