期刊文献+

基于无限度量的一元粗糙函数及其数学分析性质

Univariate Rough Functions and Their Mathematical Analysis Properties based on Infinite Measures
原文传递
导出
摘要 一元粗糙函数及其数学分析性质具有意义,但当前研究主要局限于有限度量.基于无限度量研究一元粗糙函数及其数学分析性质.将度量从有限集扩展到无限集,讨论粗糙函数分类;基于无限度量研究粗糙函数的粗糙连续、粗糙极限、粗糙导数.采用无限度量,推进了一元粗糙函数及其分析性质. Univariate rough functions and their properties of mathematical analysis are meaningful, but the current research mainly confines to limited measurements. The infinite measures are adopted to research univariate rough functions and their mathematical analysis properties. First, measurements are expanded from a finite set to an infinite set, and the rough function classification is discussed. Based on infinite measures, rough continuity,limit, derivative of rough functions are investigated. This study utilizes infinite measures to promote univariate rough functions and their analysis properties.
出处 《数学的实践与认识》 北大核心 2017年第17期260-267,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金项目(61673285 61203285) 四川省青年科技基金项目(2017JQ0046) 四川省教育厅科研项目(15ZB0029)
关键词 粗糙集 无限度量 粗糙函数 粗糙分析 rough set infinite measure rough function rough analysis
作者简介 通信作者
  • 相关文献

参考文献4

二级参考文献24

  • 1黄正华,胡宝清.模糊粗糙集理论研究进展[J].模糊系统与数学,2005,19(4):125-134. 被引量:40
  • 2Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
  • 3Pawlak Z. Rough sets: theoretical aspects of reasoning about data. Boston: Kluwer Academic Publishers, 1991.
  • 4Pawlak Z, et al. Rough sets. Communication of the ACM, 1995, 38: 89-95.
  • 5Pawlak Z. Rough set theory and its applications to data analysis. Cybernetics and Systems: An International Journal, 1998, 29: 661-688.
  • 6Czogala E, Mrozek A, Pawlak Z. Rough-fuzzy controllers. ICS WUT Reports, 1994, 12: 32.
  • 7Mrozek A, Plonka L. Rough sets for controller synthesis. ICS WUT Reports, 1994, 12: 51.
  • 8Pawlak Z. Rough sets, rough function and rough calculus. Rough-fuzzy hybridization: a new trend in decision-making. Pal S K, Skowron A, eds. Singapore: Springer- Verlag, 1999: 99-109.
  • 9Ruokolainen J. Constructive nonstandard analysis without actual infinity. Porthania: Helsinki, 2004.
  • 10Mycielski J. Analysis without actual infinity. Journal of Symbolic Logic, 1981, 46: 625-633.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部