期刊文献+

Some Challenges of Deep Mining 被引量:20

Some Challenges of Deep Mining
在线阅读 下载PDF
导出
摘要 An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania. 持续增长的全球矿产供给对于满足迅速增长的世界人口的需求和期望是必不可少的。这意味着要向更深处开采。由设备供应商通过自持久R&D研发的自动开采系统,减少了矿工暴露于恶劣的工作环境并增加了安全性。为确定矿产经济地被开采出来的深度,安全性的增长在于"地面控制"和岩石力学。尽管第二次世界大战以来,为将力学应用在采矿设计上,研究者付出了许多重要的努力,但均出现过技术和组织上的障碍。相较于大多数其他工科学科所遇到的典型工程材料,原位岩石是更复杂的一种。几千年来,采矿工程在设计上大量地依赖于经验方法。随着日益向矿山深部探索,这些方法不再适用于解决21世纪的挑战。2008年综合岩体模型(SRM)的发展给研究者提供了分析各向异性和不连续性岩体变形行为的能力——这些属性于1966年被国际岩石力学学会(ISRM)的主席和创始人Leopold Müller描述为原位岩石的本质特征。运用SRM在大尺度采矿作业数值模拟(如崩落法)上的最新进展揭露了未预料到的岩石的变形行为。大量的平行计算和云计算技术的应用提供了许多重要机会,例如,评价数值预测中的不确定性;建立现用于岩石工程中的经验法则的力学基础及其在现有经验之上的岩体行为预测的正确性;还有在深部开采的优化设计中采用离散元法。首次,采矿和岩石工程将有其自有的基于力学的"实验室"。这有望成为在未来深部高效开采设计中的主要手段。通过在有80多年历史的塔斯马尼亚Mount Lyell铜矿应用采矿法反演,本文以演示实验室中DEM和SRM程序应用的讨论作为结束。
出处 《Engineering》 SCIE EI 2017年第4期527-537,共11页 工程(英文)
关键词 Deep mining Rock discontinuities Synthetic rock mass Mineral resources Rock mechanics 深部开采 岩石的不连续性 综合岩体模型 矿产资源 岩石力学
作者简介 E-mail address: fairh001@umn.edu
  • 相关文献

同被引文献385

引证文献20

二级引证文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部