期刊文献+

Optimal Transportation for Generalized Lagrangian

Optimal Transportation for Generalized Lagrangian
原文传递
导出
摘要 This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:Vt(t, x) + sup u∈U = 0,V(0, x) = Φ0(x).
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第3期857-868,共12页 数学年刊(B辑英文版)
关键词 Optimal control Hamilton-Jacobi equation Characteristic curve Viscosity solution Optimal transportation Kantorovich pair Initial transport measure 拉格朗日函数 运输 广义 Hamilton Jacobi 普通方程 测量条件 成本函数
作者简介 E-mail: adailee.hepburn@gmail.comE-mail: zhang@utoronto.ca
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部