期刊文献+

四步相移法的非线性相位误差补偿方法

A Compensation Approach of Phase Errors Caused by Gamma Nonlinearity for Four-Step Phase-Shifting Algorithm
在线阅读 下载PDF
导出
摘要 在相位测量轮廓术中,测量系统的gamma非线性是相位误差的主要来源.系统gamma非线性使变形光栅条纹图像中出现高次谐波,从而引起展开相位存在周期性误差.对于四步相移法,三次谐波是引起周期性误差的主要因素.通过建立四步相移法的相位误差和主相位的关系模型,在系统gamma值未知的情况下,对非线性相位误差进行了补偿.计算机仿真表明,当系统的gamma值为2.2时,使用本方法补偿前后的相位误差波动幅值分别小于0.006 3rad和0.000 354rad;实验证明,一个平面白板展开相位的均方根(RMS)在误差补偿后从0.035rad降低到0.007rad,相位误差的最大值从0.086 7rad减小到0.030 8rad. Gamma nonlinearity of the projector-camera pair is a main source of phase error about phase measuring pro-filometry(PMP).It causes higher-order harmonics in deformed pattern captured by camera and leads to periodic phase error at unwrapped phase map.For four-step phase-shifting algorithm, the third harmonic is the main reason which leads to appearance of periodic phase error.In order to decrease the phase error caused by gamma nonlinearity, the model between phase error and wrapped phase was established and a phase error compensation method was proposed under the condition of gamma value unknown.The simulated measurement shows that the volatility of phase error before and after compensation is less than 0.0063 rad and 0.000354 rad respectively (γ=2.2, p=0.8).The experimental results show that RMS of unwrapped phase before and after compensation about a uniform is 0.035 rad and 0.007 rad respectively and the maximum phase error decrease from 0.0867 rad to 0.0308 rad after compensation.
出处 《中北大学学报(自然科学版)》 北大核心 2017年第3期373-379,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金青年科学基金资助项目(61601318) 山西省青年科技研究基金资助项目(201601D021078)
关键词 误差补偿 四步相移法 gamma非线性 三次谐波 谐波系数 phase error compensation four-step phase-shifting algorithm gamma nonlinearity the third harmonic coefficient of harmonic
作者简介 赵贤凌(1978-),女,讲师,博士生,主要从事非接触三维测量方法的研究.
  • 相关文献

参考文献2

二级参考文献32

  • 1F. Chen, G. M. Brown, M. ,Song. Overview of three- dimensional shape measurement using optical methods[J]. Opt. Engng. , 2000, 39(1) : 10-22.
  • 2Joaquim Salvi, Jordi Pagbs, Joan Batlle. Pattern codification strategies in structured light systems[J]. Pattern Recognition, 2004, 37(4):827-849.
  • 3F. Blais. Review of 20 years of range sensor development[J]. Electron Imaging, 2004, 13( 1 ) : 231 -243.
  • 4J. Schwider, R. Burow, K. E. Elssneret al.. Digital wave front measuring interferometry: some systematic error sources[J]. Appl. Opt., 1983, 22(21): 3421-3432.
  • 5C. A. Poynton. Gamma and its disguises: the nonlinear mappings of intensity in perception, CRTs, film and video[J]. SMPTE J. , 1993, 102:1099-1108.
  • 6H. Farid. Blind inverse gamma correction[J]. IEEE Trans. Image Process, 2001, 10(10): 1428-1433.
  • 7P. S. Huang, Q. Hu, F. P. Chiang. Double three slep phaseshifting algorithm[J]. Appl. Opt., 2002, 41(22): 4503-4509.
  • 8Z. W. Li, Y. S. Shi, C. J. Wang et al.. Accurate calibration method for a structured light system[J]. Opt. Engng. , 2008, 47(5) : 1-9.
  • 9S. Zhang, P. S. Huang. Phase error compensation for a 3D shape measurement system based on the phase-shifting method [J] . Opt. Eng. , 2007, 46(6): 1-9.
  • 10X. B. Chen, J. T. Xi, J. Jin. Phase error compensation method using smoothing spline approximation for a three dimensional shape measurement system based on gray code and phase-shift light projection[J]. Opt. Engng. , 2008, 47(11) : 113601.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部