期刊文献+

基于对称帧差和分块背景建模的无人机视频车辆自动检测 被引量:15

Automatic vehicle detection from UAV videos based on symmetrical frame difference and background block modeling
在线阅读 下载PDF
导出
摘要 为了从广域的视角准确全面地识别交通流信息,针对无人机视频提出了基于对称帧差和分块背景建模的车辆自动检测方法.首先,对视频图像进行4×4降维处理和灰度化处理,并人工勾勒出感兴趣区域(ROI),以降低图像维度,划定检测区域;其次,利用对称帧间差分法提取ROI中的运动目标,并在此基础上应用分块背景建模获得背景图像;然后,通过背景差分初步提取车辆信息;最后,基于形态学处理等方法消除噪声,实现车辆识别.此外,提出了针对车辆识别算法的正检率、重检率、漏检率和错检率4个评价指标.基于150帧无人机视频图像对算法进行测试,结果表明:算法具有较高的正检率(均值92.29%)、较低的漏检率(均值7.31%)与错检率(均值0.39%),而重检率为0. In order to recognize traffic flow information correctly and comprehensively from a regional perspective,aiming at UAV( unmanned aerial vehicle) videos,an automatic vehicle detection method is proposed based on symmetrical frame difference and background block modeling.First,4 × 4 dimension reduction and grayscale processing were conducted on UAV video frames,and a ROI( region of interest) was marked manually,for the purpose of reducing the image scale and specifying the detection region. Secondly,moving objects in ROI were extracted by symmetrical frame difference,and thus the background image was obtained through background block modeling.Then,vehicles were preliminarily extracted using background subtraction. Finally,noises were eliminated using techniques such as morphological processing,and vehicle recognition results were obtained.Four evaluation indices,i. e.,correct detection rate,repeated detection rate,missed detection rate and false detection rate,were put forward aiming at vehicle detection algorithms. Algorithm tests were conducted on 150 frames of an UAV video. Test results show that the proposed algorithm achieves high correct detection rate( averaging 92. 29%),low missed detection rate( averaging7. 31%) and false detection rate( averaging 0. 39%),while the repeated detection rate is 0.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期685-690,共6页 Journal of Southeast University:Natural Science Edition
基金 重庆市社会事业与民生保障科技创新专项资助项目(cstc2015shms-ztzx30002 cstc2015shms-ztzx0127) 重庆市教委科学研究资助项目(KJ1600513) 重庆交通大学科研启动资助项目(15JDKJC-A002) 重庆市科委基础科学与前沿技术研究资助项目(cstc2017jcyjAX0473)
关键词 智能交通 车辆检测 对称帧间差分 背景建模 无人机 感兴趣区域 intelligent transportation vehicle detection symmetrical frame difference background modeling unmanned aerial vehicle region of interest
作者简介 彭博(1986-),男,博士,讲师; 蔡晓禹(联系人),男,博士,教授,caixiaoyu@vip.163.com.
  • 相关文献

参考文献5

二级参考文献60

  • 1潘薇,游志胜,吴鵾,王宁.基于模糊聚类和卡尔曼滤波的运动目标检测[J].计算机应用,2005,25(1):123-124. 被引量:10
  • 2储浩,杨晓光,吴志周.交通移动采集技术及其适用性分析[J].ITS通讯,2006,8(1):57-60. 被引量:6
  • 3Cohen I, Medioni G. Detecting and Tracking Objects in Video Surveillance[C]. The IEEE Computer Vision and Pattern Recognition, Fort Collins, 1999.
  • 4Shastry A C, Schowengerdt R A. Airborne Video Registration and Traffic-Flow Parameter Estimation [J]. IEEE Transaction on Intelligent Transportation Systems, 2005,6(4):391-405.
  • 5Lowe D G. Distinctive Image Features from Scaleinvariant Keypoint [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE PAMI, 2005, 27(10):1 615-1 630.
  • 7Herbert B, Andreas E. Speeded-up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008,110 (3) : 346-359.
  • 8COHEN I, MEDIONI G G. Detecting and Tracking Mov- ing Objects for Video Surveillance [ C ]//Computer Vision and Pattern Rccogintion. Fort Collins, CO, USA : IEEE, 1999:2319-2325.
  • 9MEYER F, BOUTHEMY P. Region-based Tracking Using a Fine Motion Models in Long Image Sequences [ J ]. CVCIP : Image Understanding, 1994,60 (2) : 119-140.
  • 10BASCLE B, DERICHE R. Region Tracking Through Image Sequences [ C ] // Proeeedings of IEEE International Conferenee of Computer Vision. Cambridge. MA, USA: IEEE, 1995:302-307.

共引文献67

同被引文献118

引证文献15

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部