期刊文献+

高光谱摆扫型压缩成像及数据重建 被引量:2

Compressive Whiskbroom Sensing and Data Reconstruction for Hyperspectral Imaging
在线阅读 下载PDF
导出
摘要 高分辨率的应用需求使得传统的高光谱遥感成像系统面临高速率采样、海量数据存储等难以突破的瓶颈问题,压缩感知理论为传统高光谱遥感所面临的瓶颈问题提供了解决可能。针对高光谱压缩感知成像,提出了一种摆扫型高光谱压缩成像系统,该系统采用光栅、柱面透镜、二维编码孔径和线性传感阵列等光电器件,一次曝光中可获取空间像素点的光谱维向量对应的多个压缩采样值。在压缩感知数据重建过程中,为了充分利用高光谱图像的空间相关先验信息,提出了一种空间预测迭代重建算法。实验结果表明,与标准压缩感知重建算法对比,该算法在压缩感知采样率超过0.2时重建图像信噪比可提高10 d B以上。所设计的系统简单易实现,可应用于星载、机载等遥感平台的高光谱压缩成像。 Owing to the requirements of high spectral resolution, conventional hyperspectral remote-sensing imaging systems are susceptible to bottleneck problems related to high rate sampling and mass data storage. Compressive sampling possesses the potential to solve many problems associated with hyperspectral remote sensing. An optical imaging system for compressive whiskbroom sensing in hyperspectral remote-sensing imaging is proposed in this paper. The proposed system comprises spatial grating, a cylindrical lens, a two-dimensional coded aperture, and a linear sensor array. The system, which enables multiple simultaneous compressive measurements, is designed for spectrum sensing operations. An iterative prediction reconstruction algorithm is designed based on the spatial correlation of hyperspectral images. Experimental results show that the reconstruction signal-to-noise ratio of the proposed algorithm is improved by more than 10 dB when the sampling rate exceeds 0.2. The sampling simplicity of the system makes it suitable for hyperspectral compressive imaging in space-borne and airborne remote-sensing platforms.
作者 贾应彪 冯燕
出处 《红外技术》 CSCD 北大核心 2017年第8期722-727,共6页 Infrared Technology
基金 国家自然科学基金(61071171) 广东省自然科学基金(2016A030307044 2016A030307045) 韶关市科技项目(441-99000311)
关键词 高光谱遥感 压缩成像 摆扫型 数据重建 hyperspectral remote-sensing, compressive imaging, whiskbroom, data reconstruction
作者简介 贾应彪(1977-),男,讲师,博士,主要研究方向为高光谱数据处理和压缩感知技术。
  • 相关文献

参考文献3

二级参考文献45

  • 1DONOHO D L. Compressed sensing [J]. IEEE Trans- action on Information Theory, 2006, 52(4): 1289- 1306.
  • 2CANDIES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transac- tions on Information Theory, 2006, 52(2): 489-509.
  • 3BARANIUK R G. Compressive sensing [J]. IEEE on Signal Processing Magazine, 2007, 24(4): 118-121.
  • 4WAGADARIKAR A, JOHN R, WILLETT R, BRADY D. Single disperser design for coded aperture snapshot spectral imaging [J]. Applied Optics, 2008, 47: B44- B51.
  • 5KITTLE D, CHOI K, WAGADARIKAR A, BRADY D. Multi-flame image estimation for coded aperture snapshot spectral imagers {JI- Applied Optics, 2010, 49: 6824-6833.
  • 6SHU X B, AHUJA N. Imaging via three-dimensional compressive sampling (3DCS) [C]//11th Interna- tional Conference on Computer Vision (ICCV), 2011: 439-446.
  • 7DUARTE M F, BARANIUK R G. Kronecker compres- sive sensing [J]. IEEE Transactions on hnage Pro- cessing, 2012, 21(2): 494-504.
  • 8JI S, DUNSON D, CARIN L. Multitask compressive sensing [J]. IEEE Transaction on Signal Process, 2009, 57(1): 92-106.
  • 9GAN L. Block compressed sensing of natural images [C]//15th International Conference on Digital Signal Processing, 2007: 403-406.
  • 10HAUPT J, NOWAK R. Signal reconstruction from noisy random projections [J]. IEEE Transactions on Information Theory, 2006, 52(9): 4036-4048.

共引文献23

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部