期刊文献+

基于迭代支撑检测的生物发光断层成像 被引量:3

Bioluminescence Tomography Based on Iterative Support Detection
原文传递
导出
摘要 生物发光断层成像(BLT)是一种高灵敏度、高特异性的光学分子影像技术,可根据探测到的生物体表光强来重建发光光源在生物体内的三维分布。由于生物体表面测得的光强信息有限,光源重建面临巨大的挑战。为了在有限的测量条件下获得更精确的重建光源,结合BLT中光源稀疏分布的特征,将重建问题转化为L1范数优化问题,并采用迭代支撑检测(ISD)算法实现快速重建,该算法交替执行支撑集检测和信号重构两个模块,直至重建精度达到要求。为了评估ISD算法的光源定位能力,设计数字鼠仿真实验,并与三种典型的稀疏重建算法比较。仿真结果表明ISD算法对于单光源和双光源目标均可以实现准确的重建。 Bioluminescence tomography(BLT)is an optical molecular imaging technique with high sensitivity and specificity,and it can provide three-dimensional distribution of the internal source according to the detected boundary light intensity.However,the source reconstruction with limited measurements is a challenging problem.We take advantage of the sparsity feature of bioluminescence source and formulate the BLT source reconstruction into an L1 norm minimization problem.The iterative detection support(ISD)algorithm is used to realize more accurate and faster reconstruction with limited data.The reconstruction algorithm alternatively runs two operations,i.e.,support detection and signal reconstruction,until the solution meets the accuracy requirement.Simulations based on a digital mouse are designed to assess the location ability of the ISD method,and the result is compared with those of other three representative sparse algorithms.The simulation results show that the ISD method can achieve accurate reconstruction in both single-source and double-source cases.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第7期132-138,共7页 Acta Optica Sinica
基金 国家自然科学基金(61401264) 陕西省自然科学基金(2015JM6322) 中央高校基本科研业务费专项资金(GK201603025)
关键词 成像系统 图像重建 生物发光断层成像 迭代支撑检测 逆问题 imaging systems image reconstruction bioluminescence tomography iterative support detection inverse problem
作者简介 余景景(1977-),女,博士,副教授,主要从事智能信息处埋、光学分子影像方面的研究。E-mail:yuji@snnu.edu.cn
  • 相关文献

参考文献2

二级参考文献20

  • 1Haykin S. Cognitive radio : brain-empowered wireless com-munications ,2005,23 (2) :201-220.
  • 2Liang Ying-Chang,Chen Kwang-Cheng,Li Geoffrey Ye,etal. Cognitive radio networking and communications: anoverview [J]. IEEE Transactions on Vehicular Technolo-gy ,2011,60(7) :3386-3407.
  • 3Yucek T, Arslan H. A survey of spectrum sensing algo-rithms for cognitive radio applications [ J]. IEEE Commu-nications Surveys & Tutorials ,2009,11(1) :116-130.
  • 4Tian Zhi, Giannakis G B. Compressed sensing for wide-band cognitive radios [ C ] // Proceedings of 2007 IEEEInternational Conference on Acoustics, Speech,and SignalProcessing. Honolulu : IEEE,2007 : 1357 -1360.
  • 5Candes E J,Romberg J,Tao T. Robust uncertainty princi-ples :exact signal reconstruction from highly incompletefrequency information [ J]. IEEE Transactions on Informa-tion Theory,2006,52(2) :489-509.
  • 6Davenport M A,Boufounos P T,Wakin M B,et al. Signalprocessing with compressive measurements [ J ]. IEEEJournal of Selected Topics in Signal Processing,2010, 4(2):445-460.
  • 7Donoho D L. Compressed sensing [ J]. IEEE Transactionson Information Theory,2006,52(4) : 1289-1306.
  • 8Salami G, Durowoju O, Attar A, et al. A comparison be-tween the centralized and distributed approaches for spec-trum management [ J ]. IEEE Communications Surveys &Tutorials,2011,13(2) :274-290.
  • 9Meng Jia, Yin Wo-Tao, Li Hu-Sheng, et al. Collaborativespectrum sensing from sparse observations using matrixcompletion for cognitive radio networks [ C ] // Procee-dings of 2010 IEEE International Conference on Acoustics,Speech, and Signal Processing. Dallas : IEEE, 2010 : 3114-3117.
  • 10Wang Ying,Pandharipande A,Polo Y L,et al. Distribu-ted compressive wide-band spectrum sensing [C] // Pro-ceedings of 2009 Information Theory and ApplicationsWorkshop. San Diego : IEEE,2009 ; 178-183.

共引文献5

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部