摘要
手机来源识别已成为多媒体取证领域重要的热点问题。提出了一种基于语音静音段特征的手机来源识别方法,该方法先通过使用自适应端点检测算法得到语音的静音段;然后将静音段的梅尔频谱系数(MFC)的均值作为分类特征;最后结合WEKA平台的Cfs Subset Eval评价函数按照最佳优先(Best First)搜索进行特征选择,并采用支持向量机(SVM)对手机来源进行识别。实验部分对23款主流型号的手机进行了分类,结果表明所提特征具有较好的分类性能,在TIMIT数据库和自建的CKC-SD数据库上,平均识别准确率分别为99.23%和99.00%。另外,与语音段MFC特征和梅尔倒谱系数(MFCC)特征进行了对比,实验结果证明所提特征具有更加优越的性能。
Source cell-phone identification has become a hot topic in multimedia forensics. A novel cell-phone identifi- cation method was proposed based on the silent segments of recorded speech. Firstly, the silent segments were obtained using adaptive endpoint detection algorithm. Then, the mean of Mel frequency coefficients (MFC) was extracted as the characteristics for device identification. Finally, the CfsSubsetEval evaluation function of WEKA platform was selected according to the best priority (BestFirst) search, and support vector machine (SVM) was used for classification. Twen- ty-three popular models of the cell-phones were evaluated in the experiment. Experimental results show that the pro- posed method is feasible and the average recognition rates are 99.23% and 99.00% on the TIMIT database and the CKC-SD database. At the same time, the proposed feature performs was demonstrated better than the MFC features and the Mel frequency cepstrum coefficients (MFCC) features of the speech segments.
出处
《电信科学》
北大核心
2017年第7期103-111,共9页
Telecommunications Science
基金
国家自然科学基金资助项目(No.61672302
No.61300055)
浙江省自然科学基金资助项目(No.LZ15F020002
No.LY17F020010)
宁波大学科研基金资助项目(No.XKXL1405
No.XKXL1420
No.XKXL1509
No.XKXL1503)
宁波大学王宽诚幸福基金资助项目~~
关键词
多媒体取证
手机来源识别
静音段
梅尔频谱特征
audio forensics, source cell-phone identification, silent segment, Mel frequency coefficient
作者简介
裴安山(1992-),男,宁波大学信息科学与工程学院硕士生,主要研究方向为多媒体通信、信息安全、移动终端来源检测等。
通信作者:王让定,wangrangding@nbu.edu.cn王让定(1962-),男,博士,宁波大学信息科学与工程学院教授、博士生导师,主要研究方向为多媒体通信与取证、信息隐藏与隐写分析、智能抄表及传感网络技术等。
严迪群(1979-),男,博士,宁波大学信息科学与工程学院副教授、硕士生导师,主要研究方向为多媒体通信、信息安全、基于深度学习的数字语音取证等。