期刊文献+

基于深度CRBM模型的建筑能耗预测方法 被引量:2

Building Energy Consumption Forecasting Method Based on Depth CRBM Model
在线阅读 下载PDF
导出
摘要 针对建筑能耗的预测问题,提出一种基于深度条件受限玻尔兹曼机(CRBM)的预测方法.首先,将传统受限玻尔兹曼机进行扩展,融入一个历史条件输入层,使其能够根据历史时间序列来预测未来序列.然后,在CRBM基础上构建深度CRBM模型,用来执行建筑能耗的预测.在一个"个体家庭电力消耗"数据集上的实验结果表明,提出的方法能够准确预测出预定时间段内的建筑能耗,能够为电力调度提供一定的依据. For the issue that the prediction of building energy consumption,aprediction method based on deep conditional limited Boltzmann machine(CRBM)is proposed.First,the traditional Restricted Boltzmann Machine is extended to a historical condition input layer,so that it can be based on historical time series to predict the future sequence.Then,a depth CRBM model is built on the basis of CRBM to perform the prediction of building energy consumption.The experimental results on an "individual household power consumption" dataset show that the proposed method can accurately predict the building energy consumption for a predetermined period of time and can provide some basis for power dispatching.
作者 李鹏 周希霖
出处 《湘潭大学自然科学学报》 北大核心 2017年第2期45-48,70,共5页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(51408303) 国家留学基金项目(201606950013)
关键词 建筑能耗预测 深度条件受限玻尔兹曼机 历史条件输入层 时间序列 building energy consumption prediction depth conditional restricted boltzmann machine historical condition input layer time series
作者简介 通信作者:李鹏(1982-),男,乌鲁木齐人,工程师; 周希霖(1990-),男,湖北襄阳人,博士研究生,研究员.E-mail:41280781@qq.com
  • 相关文献

参考文献4

二级参考文献82

  • 1江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):30-40. 被引量:617
  • 2江亿.我国建筑能耗趋势与节能重点[J].建设科技,2006(7):10-13. 被引量:114
  • 3HanJW,KamberM,PeiJ.数据挖掘概念与技术[M].3版.范明,译.北京:机械工业出版社,2012.
  • 4唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:137
  • 5张春霞,姬楠楠,王冠伟.受限波尔兹曼机简介[EB/OL].北京:中国科技论文在线(2013-01-11)[2015-11-14].http://www.paper,edu.cn/release- paper/content/201301-528.
  • 6RUSLAN S,ANDRIY M,GEOFFREY H.Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning.New York:ACM,2007:791-798.
  • 7GLOROT X,BORDES A,BENGIO Y.Domain adaptation for large-scale sentiment classification:a deep learning approach[EB/OL].[2015-02-10].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.3442.
  • 8PANG B,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]//EMNLP 2002:Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA,USA:Association for Computational Linguistics,2002,10:79-86.
  • 9DAVE K,LAWRENCE S,PENNOCK D.Mining the peanut gallery:opinion extraction and semantic classification of product reviews[C]//WWW 2003:Proceedings of the 12th International Word Wide Web Conference.New York:ACM,2003:519-528.
  • 10KIM S M,HOVY E.Determining the sentiment of opinions[C]//COLING 2004:Proceedings of the 20th International Conference on Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2004:Article No.1367.

共引文献123

同被引文献24

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部