期刊文献+

高效转化植物甾醇为9α-OH-AD的分枝杆菌诱变选育及工艺优化 被引量:7

Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17-dione transforming strains from phytosterols and their conversion process optimization
原文传递
导出
摘要 以实验室前期筛选得到的分枝杆菌(Mycobacterium sp.LY-1)为出发菌株,采用等离子诱变(ARTP)技术选育出能高效转化植物甾醇为重要甾体药物中间体9α-羟基雄甾-4-烯-3,17-二酮(9α-OH-AD)的菌株,并对其转化工艺进行优化。经过ARTP诱变选育得到遗传稳定性较好的分枝杆菌突变株Mycobacterium sp.C33,当底物植物甾醇投料浓度为15 g/L时,转化生成9α-OH-AD的摩尔得率达到15.5%,较原始菌株提高34.8%。继而采用正交实验设计方法,对突变菌的发酵培养基组分进行优化,并建立了油水双相转化体系,进一步提高了突变菌株C33的产物摩尔得率,最高达到47.0%,较优化前(15.5%)提高了2倍。 In order to improve transformation efficiency of phytosterols into 9α-hydroxylation of 4-androstene-3,17-dione(9α-OH-AD) by Mycobacterium sp. LY-1, we studied the strains breeding using atmospheric and room temperature plasma(ARTP) technology and optimized their conversion process. A high production strain named C33 with a good genetic stability was selected and the product molar yield reached to 15.5%, 34.8% higher than that of original strain with 15 g/L phytosterols. Furthermore, the fermentation medium was optimized through the design of orthogonal experiment. Besides, oil-water bidirectional transformation system was set up to improve the 9α-OH-AD molar yield of mutant strain C33. With adding 12 mL soybean oil to each 1 g phytosterols, the molar yield of 9α-OH-AD reached 47.0%, which increased twice than that of control(15.5%).
出处 《生物工程学报》 CAS CSCD 北大核心 2017年第7期1198-1206,共9页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No.2011AA02A211) 江苏省普通高校学术学位研究生科研创新计划项目(No.KYLX16_0826)资助~~
关键词 分枝杆菌 植物甾醇 9α-OH-AD 等离子诱变 生物转化 Mycobacterium sp phytosterol 9α-OH-AD atmospheric and room temperature plasma biotransformation
作者简介 Corresponding author: Hui Li. Tel: +86-510-85326883; Fax: +86-510-85328177; E-mail: lihui@jiangnan.edu.cn
  • 相关文献

参考文献3

二级参考文献57

  • 1杨顺楷,常高翔,杨磊.白僵菌液体培养物中甾体基质和产物的薄层色谱及光密度扫描测定[J].色谱,1989,7(2):114-116. 被引量:4
  • 2凌良飞,戈梅,付磊,黄为一,陈代杰.偶发分枝杆菌MF2和MF96生物转化差异的机理研究[J].微生物学报,2005,45(4):526-529. 被引量:3
  • 3Dordic J S, Khmelnitsky Y L, Sergeeva M V. The evolution of biotransformation technologies [J]. Curr Opin Microbiol, 1998,1(3): 311.
  • 4Holland H L. Microbial transformations [J]. Curr Opin Chem Biol, 1998,2 (1): 77.
  • 5Bornscheuer U T, Pohl M. Improved biocatalysts by directed evolution and rational protein design [J]. Curr Opin Chem Biol,2001,5(2):137.
  • 6Kazlauskas R J. Molecular modeling and biocatalysis:explanations, predictions, limitations, and opportunities[J]. Curr Opin Chem Biol,2000,4(1):81.
  • 7Harris J L, Craik C S, Engineering enzyme specificity [J], Curr Opin Chem Biol, 1998,2(1): 127.
  • 8Chartrain M, Salmon P M, Robinson D K, et al.Metabolic engineering and directed evolution for the production of pharmaceuticals [J3. Curr Opin Chem Biol,2000,11(2): 209.
  • 9Johnson C R, Wells G W. Organic synthesis using biocatalytically generated intermediates [J]. Curr Opin Chem Biol,1998,2(1): 70.
  • 10Zaka A, Industrial biocatalysis [J]. Curr Opin Chem Biol,2001,5(2); 130.

共引文献36

同被引文献41

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部