期刊文献+

面向康复与辅助应用的脑-机接口趋势与展望 被引量:20

Development trend and prospect of BCI technology facing rehabilitation and assisting applications
在线阅读 下载PDF
导出
摘要 无需肢体神经肌肉接触便可实现人与外界机器设备信息交互、使"思想"变成"行动"的脑-机接口(BCI)是脑神经科学与工程技术结合的新产物,亦是临床神经功能康复与运动辅助控制的新技术,可望为部分或完全丧失语言交流与肢体运动控制能力患者(如脑卒中、脊髓损伤、脊髓侧索硬化等疾病)提供全新的增强治疗与康复手段,但目前实际应用尚存在信息处理效率欠高、康复训练时间过长、控制模型通用性差等技术瓶颈。综述了上述技术难点并以运动想象(MI)BCI和BCI拼写器(Speller)为典型介绍了其可能的模型优化策略和解决方案,最后展望了未来BCI发展方向。 Brain-computer interface can realize the information interaction between human and outer devices and change "thinking" in the mind into real actions without the contact of the limb or neuromuscular system. Brain-computer interface is a novel product combining brain neuroscience and engineering technology, and also a new technique for clinical neural function rehabilitation and assistive motor control. It hopefully provides a brand new enhancing treatment and rehabilitation means for the patients losing the ability of language communication and body movement control partly or completely (such as stroke, spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS) and etc. ). However, current practical applications are still facing the technical bottlenecks of low information processing efficiency, long rehabilitation training time and poor control model generality. In this paper, these technical difficulties are reviewed. Then, taking the motor imagery BCI and BCI speller as examples, the possible model optimization strategies and solution schemes are introduced. The future development direction of BCI is discussed in the end of the paper.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第6期1307-1318,共12页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(81630051 91520205 61603269 81601565 31500865) 天津市科技支撑计划(15ZCZDSY00930)项目资助
关键词 脑-机接口 临床康复 辅助控制 模型优化 brain-computer interface clinical rehabilitation assistive control model optimization
作者简介 王仲朋,2014年于河北工业大学获得学士学位,现为天津大学生物医学工程专业在读博士研究生,主要研究方向为神经康复与脑-机接口。E-mail:tunerlwzpl@tju.edu.cn何峰,2009年于天津大学获得博士学位,现为天津大学副教授,主要研究方向为神经工程、生物医学信息处理等。E-mail:heaven@Ou.edu.cn明东(通讯作者),2004年于天津大学获得博士学位,现为天津大学教授,主要研究方向为神经工程与康复、生物医学信息处理等。E-mail:richardming@tju.edu.cn
  • 相关文献

参考文献4

二级参考文献134

  • 1王黎,于涛,闻邦椿.基于脑电α波的非线性参数人体疲劳状态判定[J].东北大学学报(自然科学版),2005,26(12):1174-1177. 被引量:13
  • 2周鹏,曹红宝,熊屹,葛家怡,张爽,王明时.基于脑机接口的智能康复系统的设计[J].计算机工程与应用,2007,43(26):1-4. 被引量:18
  • 3Platz T. Evidence-based arm rehabilitation-a systematic review of the literature [J]. Nervenarzt, 2003, 74 (10): 841-849.
  • 4Wolpaw JR, Birbaumer N, McFarland D J, etal. Brain- computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113 (6): 767-791.
  • 5Daly JJ, Wolpaw JR. Brain computer interfaces in neurological rehabilitation [J]. Lancet Neurol, 2008, 7: 1032-43.
  • 6Birbaumer N, Kiibler A, Ghanayim N, et al The thought translation device (TTD) for completely paralyzed patients [J]. IEEE Trans Rehabil Eng, 2000, 8 (2): 190-193.
  • 7Pfturtscheller G, Neuper C. Motor imagery and direct brain- computer communication [J]. Proc IEEE, 2001, 89 (7): 1123-1134.
  • 8Yoo E, Park E, Chtmg B. Mental practice effect on line-tracing accuracy inpersons with hemiparetic stroke: a preliminary study [J]. Arch Phys Med Rehabil, 2001, 82 (9): 1213-1218.
  • 9DijkermanHC, Ietswaart M, JolmstonM, etal. Does motor imagery training improve hand function in chronic stroke pati- ents?Apilotstudy [J]. ClinRehabil, 2004, 18 (5): 538-549.
  • 10Page S J, Levine P, Leonard A. Mental practice in chronic stroke. Results of a randomized, placebo-controlled trial [J]. Stroke, 2007, 38: 1293-1297.

共引文献71

同被引文献104

引证文献20

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部