期刊文献+

面向分组密码的可重构异构多核并行处理架构 被引量:7

Reconfigurable Asymmetrical Multi-core Architecture for Block Cipher
在线阅读 下载PDF
导出
摘要 现有的可重构分组密码实现结构中,专用指令处理器吞吐率不高,阵列结构资源利用率低、算法映射过程复杂.为此,设计了分组密码可重构异构多核并行处理架构RAMCA(Reconfigurable Asymmetrical Multi-Core Architecture),分析了典型SP(AES-128)、Feistel(SMS4)、L-M(IDEA)及MISTY(KASUMI)结构算法在RAMCA上的映射过程.在65nm CMOS工艺下完成了逻辑综合和功能仿真.实验表明,RAMCA工作频率可达到1GHz,面积约为1.13mm2,消除工艺影响后,对各分组密码算法的运算速度均高于现有专用指令处理器以及Celator、RCPA和BCORE等阵列结构密码处理系统. Among the existing reconfigurable block cipher hardware structures, the special instruction processor does not achieve high throughput rate, while resource utilization of the reconfigurable block cipher processing array is low and mapping process is very complicated. Therefore, the reconfigurable asymmetrical multi-core architecture (RAMCA) for block cipher was designed. Mapping processes of typical structures, which were SP (AES-128) ,Feistel (SMS4), L-M (I- DEA) and MISTY (KASUMI),was analyzed. Hardware implementation was designed and synthesized in a 65nm CMOS process. The experimental area is about 1.13sq mm while frequency reaches 1GHz. After the influence of the process is eliminated, the performance of RAMCA is higher than that of other special instruction processors and most of the reconfigurable block cipher processing arrays, such as Celator, RCPA, BCORE, etc.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第6期1311-1320,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61404175)
关键词 分组密码 异构多核 可重构 并行处理 密码处理器 block cipher heterogeneous multi-core reconfigurable parallel processing cipher processor
  • 相关文献

参考文献6

二级参考文献73

  • 1沈启峰,黄士坦,杨靓.AES中有限域运算的优化及算法高速实现[J].微机发展,2005,15(12):15-17. 被引量:4
  • 2岳虹,沈立,戴葵,王志英.基于TTA的嵌入式ASIP设计[J].计算机研究与发展,2006,43(4):752-758. 被引量:9
  • 3吴文玲,张文涛,冯登国.Impossible Differential Cryptanalysis of Reduced-Round ARIA and Camellia[J].Journal of Computer Science & Technology,2007,22(3):449-456. 被引量:22
  • 4Abnous A and Bagherzadeh N. Pipelining and bypassing in a VLIW Processor [J]. IEEE Trans. on Parallel and Distributed Systems, 1994, 5(6): 658-664.
  • 5Kessler R E. The alpha 21264 microprocessor [J]. IEEE Micro, 1999, 19(2): 24-36.
  • 6Ebeling C, Cronquist D C, and Franklin P. RAPID- Reconfigurable Pipelined Datapath[C]. The 6th International Workshop on Field Programmable Logic and Applications, Darmstadt, Germany, Sep. 23-25, 1996: 126-135.
  • 7Goldstein S C, Schmit H, and Budiu M, et al.. PipeRench: A reconfigurable architecture and compiler [J]. Computer, 2000, 33(4): 70-77.
  • 8Tseng J H and Asanovic K. A speculative control scheme for an energy-efficient banked register file [J]. IEEE Trans. on Computers, 2005, 54(6): 741-751.
  • 9Seznec A, Toullec E, and Rochecouste O. Register write specialization register read specialization: A path to complexity-effective wide-issue superscalar processors [C]. The 35th Annual IEEE/ACM International Symposium on Microarchitecture, Istanbul, Turkey, Nov. 18-22, 2002: 383-394.
  • 10Yu Xue-rong. Design and implementation of reconfigurable shift unit using FPGAs [C]. The 1st International Symposium on Pervasive Computing and Applications Proceedings. Urumchi, Xingjiang, China, August. 3-5, 2006: 543-545.

共引文献42

同被引文献32

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部