期刊文献+

Bonded-particle model calibration using response surface methodology 被引量:12

Bonded-particle model calibration using response surface methodology
原文传递
导出
摘要 The bonded-particle model (BPM) is commonly used in numerical analysis of the mechanical behavior of rock samples. Constructing a BPM model requires specification of a number of microstructural parame- ters, including the parallel-bond tensile strength, parallel-bond cohesion strength, parallel-bond effective modulus, parallel-bond friction angle, and parallel-bond stiffness ratio. These parameters cannot be eas- ily measured in the laboratory or directly related to either measurable or physical material parameters. Hence, a calibration process is required to choose the values to be used in simulations of physical systems. In this study, response surface methodology along with the central composite design approach is used to calibrate BPMs. The sensitivities of the microparameters related to the uniaxial compressive strength (UCS) and elasticity modulus (i.e., the macroscopic responses of the models) are thoroughly scrutinized. Numerical simulations are performed to carefully assess the performance of the model. It is found that the elasticity modulus is highly correlated with the parallel-bond effective modulus. In addition, the parallel- bond tensile and cohesion strengths are the two most significant microparameters with a considerable effect on the UCS. The predicted values determined by the proposed approach are in good agreement with the observed values, which verifies the applicability of the proposed method. The bonded-particle model (BPM) is commonly used in numerical analysis of the mechanical behavior of rock samples. Constructing a BPM model requires specification of a number of microstructural parame- ters, including the parallel-bond tensile strength, parallel-bond cohesion strength, parallel-bond effective modulus, parallel-bond friction angle, and parallel-bond stiffness ratio. These parameters cannot be eas- ily measured in the laboratory or directly related to either measurable or physical material parameters. Hence, a calibration process is required to choose the values to be used in simulations of physical systems. In this study, response surface methodology along with the central composite design approach is used to calibrate BPMs. The sensitivities of the microparameters related to the uniaxial compressive strength (UCS) and elasticity modulus (i.e., the macroscopic responses of the models) are thoroughly scrutinized. Numerical simulations are performed to carefully assess the performance of the model. It is found that the elasticity modulus is highly correlated with the parallel-bond effective modulus. In addition, the parallel- bond tensile and cohesion strengths are the two most significant microparameters with a considerable effect on the UCS. The predicted values determined by the proposed approach are in good agreement with the observed values, which verifies the applicability of the proposed method.
出处 《Particuology》 SCIE EI CAS CSCD 2017年第3期141-152,共12页 颗粒学报(英文版)
关键词 Bonded-particle modelCalibrationResponse surface methodologyUniaxial compressive strength Bonded-particle modelCalibrationResponse surface methodologyUniaxial compressive strength
作者简介 Corresponding author, Fax: +98 2188008838, E-mail address: s.chehreghani@ut.ac.ir (S. Chehreghani).
  • 相关文献

参考文献3

二级参考文献38

  • 1Antonyuk, S. (2006). Deformations- und Bruchverhalten von kugelfijrmigen Granulaten bei Druck- und Sto$beanspruchung. a.-v.-G. University Magdeburg (Disserta?tion).
  • 2Bicanic, N. (2004). Discrete element method. In E. Stein, R. de Borst, & T.J. R. Hughes (Eds.), Encyclopedia of computational mechanics. New York: Wiley (Chapter 11).
  • 3Carmona, H. A., Wittel, F. K .. Kun, F., & Herrmann, H. ]. (2008). Fragmen?tation processes in impact of spheres. Physical Review Letters E, 77(5), 015302.
  • 4Cundall, P. A., & Strack, a. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique. 29(1),47-65.
  • 5Itasca. (2005). Particle flow code in 3 dimensions (PFC3D), Manual, Version 3.1. Itasca Consulting Group Inc.
  • 6Kafui, K. D., & Thornton, C (2000). Numerical simulations of impact breakage of a spherical crystalline agglomerate. Powder Technology, 109(1-3), 113- 132.
  • 7Mueller, p .. Antonyuk, 5., & Tomas, J. (2011). Simulation des Stofs- und Druck?vorgangs von Zeolith 4A-Granulaten. Chemie lngenieur Technik, 83(5), 643- 651.
  • 8Potyondy, D. 0., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329- 1364.
  • 9Potyondy, D. a. (2007). Simulating stress corrosion with a bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 44(5), 677- 691.
  • 10Schtinert, K. (2004). Breakage of spheres and circular discs. Powder Technology, 143/144,2-18.

共引文献74

同被引文献82

引证文献12

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部