期刊文献+

自动确定聚类个数的模糊聚类算法 被引量:23

Fuzzy Clustering Algorithm for Automatic Identification of Clusters
在线阅读 下载PDF
导出
摘要 本文通过集成多次FCM(Fuzzy C-Means)聚类结果以及采用软化分方式,提出一种新的自动确定聚类个数的模糊聚类算法.本算法首先利用不同的聚类数目对数据进行FCM聚类,然后充分利用多次FCM聚类得到的隶属度信息构建一个累积邻接矩阵,最后采用迭代方式对累积邻接矩阵进行图切分以获取最终聚类结果.大量的仿真实验表明,相对现有集成聚类方法,本文方法能够有效减少FCM的聚类次数,并且在图切分过程中的迭代次数为现有方法的1/2左右. To automatically determine the number of clusters,a newfuzzy clustering algorithm is proposed in this study,which is based on soft partition scheme and integrates many FCMclustering results. In this method,FCMclustering is implemented on data by the cluster number; then the membership information is used to build a cumulative adjacency matrix; finally,the graph cut method is adopted to the cumulative adjacency matrix by iterative manner to obtain clustering results. Simulation experiments showthat,compared to the current integrated clustering method,our method can effectively reduce the number of FCMclustering; furthermore,its iterations in the graph cut process is about 1/2 of the existing method.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第3期687-694,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61305046 No.61502065) 吉林省自然科学基金(No.20140101193JC No.20130522117JH 20150101055JC) 重庆市基础与前沿研究计划项目(No.cstc2015jcyj BX0127)
关键词 模糊聚类 FCM算法 图切分 fuzzy clustering fuzzy C-means algorithm graph partition
作者简介 陈海鹏 男,1978年生于山东曹县.吉林大学计算机科学与技术学院副教授.研究方向为多媒体技术、图像处理和信息安全.E-mail:chenhp@jlu.edu.cn 申铉京 男,1958年生于吉林和龙.吉林大学计算机科学与技术学院教授、博士生导师.研究方向为多媒体技术、图像处理和智能检测系统. 龙建武 男,1984年生于湖北恩施.重庆理工大学计算机科学与工程学院讲师.研究方向为图像处理和计算机视觉. 吕颖达(通讯作者)女,1983年生于河北文安.吉林大学公共计算机教学与研究中心讲师.研究方向为图像处理与模式识别.E-mail:ydlv@jlu.edu.cn
  • 相关文献

参考文献2

二级参考文献22

  • 1余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报,2006,35(3):224-228. 被引量:17
  • 2Thanh N Tran,Ron Wehrens,Dirk H Hoekman, et al. Initialization of Markov random field clustering of large remote sensing images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2005,43(8) : 1912 - 1919.
  • 3Julian Besag. On the statistical analysis of dirty pictures [ J ]. Journal of the Royal Statistical Society, Ser&s B (Methodological), 1986,48(3) :259 - 302.
  • 4Schroder M, Rehrauer H, Seidel K, Datcu M. Spatial information retrieval from remote-sensing images: Ⅱ Gibbs-Markov random fields [ J ].IEEE Transaction on Geoscience and Remote Sense, 1998,36(5) : 1446 - 1455.
  • 5Terrence Chen, Thomas S Huang, Zhi-pei Liang. Segmentation of brain MR images using hidden Markov random field model with weighting neighborhood system[ A]. Nuclear Science Symposium Conference Record[ C]. Roma, Italy: IEEE. Press, 2004. 3209 - 3212.
  • 6Zhigan Peng,William Wee, and Jing-Huei Lee. MR brain imaging segmentation based on spatial Gaussian mixture model and Markov random field [ A ]. Proceedings of IEEE International Conference on Image Processing[ C]. Genoa, Italy: IEEE. Computer Society Press, 2005.13 - 16.
  • 7F Jing, M Li, B Zhang. Unsupervised image segmentation using local homogeneity analysis[ A]. IEEE International Conference on Multimedia & Expo (ICME) [ C ]. Lusanne, Switzerland: IEEE Computer Society Press, 2002.456-459.
  • 8D Martin, C Fowlkes,D Tal,J Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [ A ]. Proceedings of International Conference on Computer Vision [ C ]. Vancouver, Canada: IEEE, Computer Society Press,2001. 416 - 423.
  • 9Omran M G, Salman A, Engelbrecht A P. Dynamic clustering using particle swarm optimization with application in image segmentation [ J ]. Pattem Analysis and Applications, 2005, 8 (4) :332 - 344.
  • 10Basu M. Gaussian-based edge-detection methods-a survey [J]. IEEE Transactions on Systems,Man and Cybemetics-Part C,2002,32(3) :252 - 260.

共引文献31

同被引文献146

引证文献23

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部