期刊文献+

高比能锂硫电池功能电解质材料 被引量:4

Functional electrolytes for high specific energy lithium sulfur batteries
在线阅读 下载PDF
导出
摘要 锂硫电池具有能量密度高、单质硫来源广泛和环境友好等优势,是新型二次电池未来发展的方向之一。作为锂硫电池中的重要组成部分,功能电解质材料的物性特征与电池的整体性能密切相关。在当前电解质材料的研究中,还存在许多关键技术难题,如多硫化物溶解于锂硫电池电解质中所引起的穿梭效应,会导致锂硫电池库仑效率低、容量衰减快和自放电严重等问题。本文综述了面向锂硫电池应用的新型功能电解质材料的研究进展:(1)有机液体电解质中有机溶剂组分、锂盐和添加剂的优化改性对锂硫电池性能的影响;(2)离子液体电解质对多硫化物扩散的阻碍作用;(3)固态/半固态电解质对穿梭效应的抑制,并展望了锂硫电池用功能电解质材料的未来发展方向。 Currently lithium sulfur (Li-S) batteries are recognized as the most promising novel secondary battery candidates due to their high energy density, abundant sulfur and environment benign. The functional electrolyte is a major component of Li-S batteries, which physical property characteristics are closely related to the electrochemical performance of Li-S batteries. Nevertheless, its development is restricted by some key technologies. The polysulfides dissolve into electrolytes and cause the consequent shuttle phenomenon, resulting in low coulombic efficiency, fast capacity fade and serious self-discharge of Li-S batteries. This paper reviews the recent research progress for these problems of the electrolytes for Li-S batteries. ① the modification and optimization of the solvent components, lithium salts and additives of the organic liquid electrolytes to improve the performance of Li-S batteries, ② the effect on polysulfides dissolution by ionic liquid electrolytes, and ③ the suppression of the shuttle effects by (semi-) solid-state electrolytes. Finally, the future research trends of the functional electrolytes for Li-S electrolytes are proposed.
出处 《储能科学与技术》 CAS CSCD 2017年第3期451-463,共13页 Energy Storage Science and Technology
基金 国家重点研发计划项目(2016YFB0100204) 国家自然科学基金项目(21373028)
关键词 锂硫电池 有机液体电解质 离子液体 固态电解质 半固态电解质 lithium sulfur batteries organic liquid electrolytes ionic liquids solid state electrolytes semi-solid electrolytes
作者简介 王丽莉(199l-),女,博士研究生,主要研究方向为锂硫电池电解质,E-mail:lilywang8991@163.com; 通讯联系人:陈人杰,教授,主要研究方向为新能源材料与功能器件,E-mail:chenrj@bit.edu.cn。
  • 相关文献

参考文献1

二级参考文献20

  • 1Armand M. , Tarascon J. M.. Nature[J] , 2008, 451(7): 652---658.
  • 2HEXing.Guang(和兴广),YANGGui—Ling(杨桂玲),SUNLi—Qun(孙立群),XIEHai-Ming(谢海明),WANGRong-Shun(王荣顺).Chem.J.ChineseUniversities(高等学校化学学报)[J],2010,31(11):2148-2152.
  • 3Liang C. , Dudney N. J. , Howe J. Y.. Chem. Mater. [J] 2009, 21(19) : 4724---4730.
  • 4Ji X. , Lee K. T. , Nazar L. F.. Nature Materials[J] , 2009, 2460(17) : 500-506.
  • 5Elazari R. , Salitra G. , Talyosef Y. , Grinblat J. , Kelley C. S. , Xiao A. , Affinito J. , Aurbacha D.. J. Electrochem. Soc. [J] , 2010, 157(10): Al131-AII38.
  • 6Yamin H., Gorenshtein A., Penciner J., Sternberg Y., Peled E.. J. Electrochem. Soc. [J], 1988, 135(5): 1045--1048.
  • 7Mikhaylik Y. V., AkridgeJ. R.. J. Electrochem. Soc.[J], 2003, 150(3): A306-A311.
  • 8Kumaresan K. , Mikhaylik Y. , White R. E.. J. Electrochem. Soe. [J] , 2008, 155(8) : A576-A582.
  • 9Ryua H. S. , Guoa Z. , Ahn H. J. , Cho G. B. , Liu H.. J. Power Sources[J] , 2009, 189(2) : 1179-1183.
  • 10YUANKe-Gu0(苑克国),WANGAn—Ba”g(王安邦),YuZhong—Ba0(余仲宝),WANGWei.Kun(王维坤),YANGYu—Sheng(杨裕生).Chem.J.ChineseUniversities(高等学校化学学报)[J],2006,27(9):1738-1741.

共引文献16

同被引文献56

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部