期刊文献+

射频磁控溅射法制备Cu_2SnS_3薄膜结构和光学特性的研究

Synthesis and Optical Properties of Magnetron Sputtered Cu_2SnS_3 Thin Films
在线阅读 下载PDF
导出
摘要 利用射频磁控溅射法并经快速退火处理制备Cu_2SnS_3薄膜,研究了使用SnS_2、Cu_2S混合靶(摩尔比分别为1∶1、1∶1.5、1∶2)及在不同溅射功率(40和80W)条件下所制备Cu_2SnS_3薄膜的晶体结构、物相组成、化学组分、表面形貌和光学特性。结果表明:混合靶的SnS_2、Cu_2S最佳摩尔比为1∶1.5,利用该靶所制备薄膜均结晶;在溅射功率为80 W条件下,所制备薄膜结晶质量和择优取向度高,应变最小,Cu∶Sn∶S摩尔比为1.89∶1∶2.77,平均颗粒直径和平均粗糙度分别为332和0.742 nm,吸收系数达到10~4cm^(-1),禁带宽度为1.32 eV。制备了n-Si/p-CTS异质结器件,器件具有良好的整流特性和光电流响应特性。 The Cu2SnS3( CTS) thin films were deposited by RF magnetron puttering of a lab-made SnS2/Cu2S target. The impact of the molar ratio of SnS2/Cu2S powders and sputtering power on the microstructures,stoichiometric ratio and optical properties of the CTS coating was investigated with X-ray diffraction,energy dispersive spectroscopy,atomic force microscopy,Raman spectroscopy and UV/VIS/NIR spectroscopy. The preliminary results show that high quality CTS coatings were deposited under the optimized conditions. To be specific,grown at a molar ratio of 1∶ 1. 5 and a sputtering power of 80 W,the polycrystalline tetragonal-phase CTS coatings consisted of 213 preferentially orientated grains with average grain-size of 332 nm,surface roughness of 0. 742 nm and stoichiometric ratio of 1. 89( Cu) ∶ 1( Sn) ∶ 2. 77( S). The absorption coefficient and band-gap were 10^4cm^-1 and 1. 32 eV respectively. Moreover,the n-Si/p-CTS hetero-junction,made of the low strain CTS coatings,displayed good properties of rectifying and photocurrent response.
出处 《真空科学与技术学报》 CSCD 北大核心 2017年第4期400-408,共9页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金(No.51272061)资助项目
关键词 Cu2SnS3薄膜 射频磁控溅射 快速退火 晶体结构 光学特性 Cu2SnS3 thin film RF magnetron sputtering Rapid thermal annealing Crystalline structure Optical properties
作者简介 联系人:Tel:13956030412;E-mail:liangqi@126.com
  • 相关文献

参考文献4

二级参考文献71

  • 1葛启函,邓宏,陈航,徐自强.不同掺Al^(3+)浓度的ZnO:Al薄膜性能研究[J].电子科技大学学报,2006,35(2):253-256. 被引量:8
  • 2詹勇军,吴卫东,王锋,白黎,唐永建,谌家军.NaF薄膜的脉冲激光沉积法制备与结构研究[J].强激光与粒子束,2007,19(4):633-637. 被引量:3
  • 3田民波,李正操.薄膜技术与薄膜材料[M].北京:清华大学出版社,2011,155-156.
  • 4B. Li, Y. Xie, J.X. Huang, Y.T. Qian, ,l. Sol. Stat. Chem. 153 (2000) 170-173.
  • 5X.Y. Chen, X. Wang, C.H. An, J.W. Liu, Y.T. Qian, J. Cryst. Growth 256 (2003) 368-376.
  • 6B.H. Qu, M. Zhang, D. Lei, Y.P. Zeng, Y.J. Chen Nanoscale 3 (2011) 3646-3651.
  • 7M. Onoda, X.A. Chen, A. Sato, H. Wada, Mater. Res. Bull. 35 (20001 1563-1570.
  • 8M. Bouaziz, J. Ouerfelli, S.K. Srivastava, J.C. Bem6de, M. Amlouk, Vacuum 85 (2011 ) 783-786.
  • 9M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517 (2009) 2527-2530.
  • 10B.H. Qu, H.X. Li, M. Zhang, L. Mei. L.B. Chen, Y.G. Wang, Nanoscale 3 (2011 ) 4389-4393.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部