期刊文献+

基于物化性质对嗜热蛋白的预测 被引量:1

Prediction of thermophilic proteins based on physicochemical properties
在线阅读 下载PDF
导出
摘要 嗜热蛋白在高温下能保持稳定性和活性,是研究蛋白质热稳定性的理想模型,开发一个蛋白质热稳定性识别的方法将对蛋白质工程和蛋白质的设计很有帮助。目前的研究中,氨基酸的组成及其物化性质一直被认为和蛋白质的热稳定性相关。本研究筛选出可靠的数据集,包括915个嗜热蛋白和793个非嗜热蛋白。利用蛋白质氨基酸的物化性质和氨基酸的组成表征嗜热蛋白,将二肽氨基酸组成整合到9组氨基酸物化性质中使蛋白序列公式化。支持向量机5折叠交叉验证表明:当gap=0时,290个特征产生的精度最高,为92.74%。因此说明对于分析蛋白质的热稳定性,所建立的预测模型将是一个很有效的工具。 Thermophilic proteins can keep stability and activity at high temperature, which are ideal materials to study stability of proteins. Developing a valuable method to identify thermostability of protein would be helpful for protein engineering. In the present study, amino acid composition and physicochemical properties of protein have been thought of being related to the thermostability of protein. A reliable benchmark dataset including 915 thermophilic proteins and 793 non-thermophilic proteins is constructed for training and testing the proposed model in this article. We define protein samples using physicochemical properties and component of amino acid, so we design a descriptor which will combine dipeptide composition with nine physiochemical properties of amino acids. The results by support vector machine (SVM) with 5-fold cross-validation show that the best accuracy is 92.74% by using 290 features when the parameter gap is 0, indicating that our model holds very high potential to become a useful tool for the research on protein thermostability.
作者 刀福英 陈欣欣 林昊 DAO Fuying CHEN Xinxin LIN Hao(Key Laboratory for Neuro-lnformation of Ministry of Education, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China)
出处 《生物信息学》 2017年第1期1-6,共6页 Chinese Journal of Bioinformatics
基金 四川省应用基础研究项目(2015JY0100) 中央高校基本业务费(ZYGX2015J144 ZYGX2015Z006)
关键词 嗜热蛋白 热稳定性 伪氨基酸组分 氨基酸物化性质 Thermophilic proteins Thermostability Pseudo amino acid composition Physico-chemical roperties
作者简介 刀福英,女,硕士研究生,研究方向:生物信息学;E-mail:18200234053@163.com. 通信作者:林昊,男,研究员,硕士生导师,研究方向:生物信息学;E-mail:hlin@sestc.edu.cn.
  • 相关文献

参考文献3

二级参考文献49

共引文献18

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部