期刊文献+

利用三层条件随机场模型进行情感极性分类及强度分析 被引量:5

Sentiment classification and strength analysis method based on three-layered conditional random fields
在线阅读 下载PDF
导出
摘要 通过对商品评论进行基于方面的情感分析,可以得到某件商品各个方面的优劣情况。提出利用三层CRF模型进行情感极性分类及强度分析。在CRF模型中,融合了词、词性、语气词、程度词、方面和评价词的共现等特征。在情感句识别、情感极性分类和情感强度分析上得到的F1值分别为86.3%、77.2%、70.7%,证明了:a)分层CRF模型在各个层次的任务中都能取得较好的结果;b)语气词、程度词、方面和评价词的共现特征在情感分类时的有效性。 In research about product comments, aspect-based emotion analysis can help people to find out strengths and weak- nesses of each aspect of a product. This paper proposed a sentiment analysis method based three-layered CRF model. It used all word, part of speech, modal particles, degree word, co-occurrence of aspect and evaluation term features in CRFs model. The Fl-measure of emotion sentence recognition, emotional polarity classification and emotional strength analysis were 86.3%, 77.2% and 70.7% respectively. It proves that layered CRF leads to better result in each layer than usual CRF, modal particles, degree word, co-occurrence of aspect and evaluation term are all useful features in sentiment analysis.
出处 《计算机应用研究》 CSCD 北大核心 2017年第4期986-990,共5页 Application Research of Computers
关键词 商品评论 情感分类 情感强度分析 条件随机场 product reviews sentiment classification sentiment strength analysis conditional random fields
作者简介 李向前(1970-),男,江苏淮安人,副教授,硕士,主要研究方向为网络与信息系统、计算机应用技术、计算机图形图像; 李军伟(1991-),男(通信作者),硕士,主要研究方向为机器学习与认知计算(davidlee91@163.com).
  • 相关文献

参考文献1

二级参考文献17

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:328
  • 2王治敏 朱学锋 俞士汶.基于现代汉语语法信息词典的词语情感评价研究.Computational Linguistics and Chinese Language Processing,2005,10(4):581-592.
  • 3Kjersti Aas, Line Eikvil. Text Categorisation: A Survey [EB/OL]. Technical Report. Norwegian Compu ting Center, 1999.
  • 4Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the Semantic Orientation of Adjectives [A].In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C]. 1997. 174-181.
  • 5Turney Peter, Littman Michael. Measuring Praise and Criticism: Inference of Semantic Orientation from As sociation [J]. ACM Transactions on Information Systems, 2003, 21(4): 315-346.
  • 6Esuli, Andrea, Sebastiani, Fabrizio. Determining the Semantic Orientation of Terms Through Gloss Classification [A]. In: Proceedings of CIKM-05, the ACM SIGIR Conference on Information and Knowledge Management[C]. 2005. 617-624.
  • 7Turney Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews [A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics [C]. 2002. 417- 424.
  • 8Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? Sentiment Classification Using Machine Learning Techniques [A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C].2002. 79-86.
  • 9Rebecca Bruce, Janyce Wiebe. Recognizing Subjectivity: A Case Study in Manual Tagging [J]. Natural Language Engineering, 1999, 5(2) : 1-16.
  • 10Janyce Wiebe, Ellen Riloff. Creating Subjective and Objective Sentence Classifiers from Unannotated Texts [A]. In: Proceedings of the 6th International Confer ence on Computational Linguistics and Intelligent Text Processing [C]. 2005.

共引文献109

同被引文献41

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部