期刊文献+

基于聚多巴胺原位还原修饰的SiO_2@PDA@Au复合材料的制备及催化性能 被引量:4

Synthesis and Catalytic Properties of SiO_2@PDA@Au Composites Based on Polydopamine
在线阅读 下载PDF
导出
摘要 纳米金催化剂由于具有条件温和、专一性强等特点而广泛用于多相绿色催化过程中,但它易团聚、难分离、难回收的特点使其应用受到限制。受到聚多巴胺(PDA)具有黏附性和还原性的启发,本文利用PDA原位还原四氯金酸制备了一种多层负载型SiO_2@PDA@Au催化剂颗粒。PDA可以紧密且连续地包覆在SiO_2表面,并可实现金纳米颗粒的原位还原和负载;金含量随着PDA层厚的增加而增加,金颗粒粒径较均一、无团聚,粒径约为30nm;当Au负载量(质量分数)为1.59%时,对亚甲基蓝(MB)的还原反应的催化活性最好(表观反应速率常数Kapp=1.613 4min-1),且具有良好的循环稳定性。 Due to the mild working condition and good selectivity as a catalyst, gold nanoparticles (AuNPs) have attracted increasing attention and were widely used in multi-phase green catalytic process. However, AuNPs in solution are unstable, susceptible to aggregation,and difficult in recovery which limits their applications. Inspired by the universal adhesive ability and redox activity of polydopamine(PDA) , the catalytic particle(Si02 @PDA@Au) ,composed of a silica core particle,a PDA interlayer coated on the core, and the inrsitu reduced AuNPs deposited on the PDA layer,was designed and prepared. PDA can be coated on Si02 surface tightly and continuously,and the inrsitu reduction and loading of AuNPs can be efficiently achieved. The amount of AuNPs increases upon increasing the thickness of PDA. The obtained AuNPs are around 30 nm in diameter with narrow size distribution and without aggregation. The Si02@PDA@Au hybrid catalysts with 1. 59% of AuNPs loaded exhibit good catalytic performance (Kapp = 1 . 613 4 min-1) with excellent recycling stability for the reduction reaction of methylene blue(MB).
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期16-22,35,共8页 Journal of East China University of Science and Technology
基金 国家自然科学基金(91534103)
关键词 金纳米粒子 聚多巴胺 复合材料 催化剂 AuNPs polydopamine composite material catalyst
作者简介 闫孟飞(1991-),女,河南邓州人,硕士生,研究方向为功能性纳米颗粒的制备E-mail:mfan03013@163.com 通信联系人:韩霞,E-mail:xhan@ecust.edu.cn
  • 相关文献

二级参考文献37

  • 1Kim, I.C., Lee, KH. and Tak, T.M., J. Membr. Sci., 2001, 183: 235.
  • 2Vander Bruggen, B., Geens, 1. and Vandecasteeke, C., Sep. Sci. Technol., 2002, 37: 783.
  • 3Bowen, W.R., Mohammad, A.W. and Hilal, N., 1. Membr. Sci., 1997, 126: 91.
  • 4Hayakawa, Y., Trasawa, N. and Hayashi, E., J. Appl. Polym. Sci., 1996,62: 951.
  • 5Lee, C., Low, K. and Gan, P., Environ. Technol., 1999,20: 99.
  • 6Philippe, C., Roberto, B. and Willy, V., J. Chern. Technol. Biotechnol., 1998,72: 289.
  • 7Zhao, Z.P., Li, J.D., Chen, J. and Chen, C.X., J. Membr. Sci, 2005, 251: 239.
  • 8Aerts, S., Vanhulsel, A., Buekenhoudt, A., Weyten, H. and Kuypers, S., J. Membr. Sci., 2006, 275: 212.
  • 9Buonomenna, M.G., Lopez, L.e., Davoli, M., Favia, P. and Agostino, R.D., Microporous and Mesoporous Mater., 2009, 120: 147.
  • 10Akbari, A., Desc1aux, S., Rouch, J.C. and Aptel, P., J. Membr. Sci., 2006, 286: 342.

共引文献11

同被引文献18

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部