期刊文献+

基于改进粒子群算法的变异体选择优化 被引量:8

Mutants selection based on improved particle swarm optimization algorithm
在线阅读 下载PDF
导出
摘要 变异测试是常用的测试方法之一,变异测试分析的过程中计算开销会比较大,问题主要集中于测试过程中会产生大量的变异体。为了减少变异体的数量,提出用标准粒子群聚类算法进行选择优化,但标准粒子群算法在被测数据量增加到一定数量的时候,它的迭代次数就会增加、收敛速度就会下降。针对以上问题提出基于改进的粒子群算法对变异体进行选择优化。通过对变异体集合进行聚类分区,增强变异体集合的多态性,从而对粒子群算法进行改进优化。实验结果表明,在不影响测试充分度的前提下,使变异体的数量大幅度减少,同时与K-means算法以及标准粒子群算法相比之下,改进后的方法具有更好的优化效果。 Mutation test is one of the most common testing methods. In the process of mutation test analysis,computational overhead will be relatively large. The problem is mainly that mutation test will generate a lot of variants in that process. Therefore,in order to reduce the number of variants,this paper proposed a standard particle swarm optimization algorithm to select and optimize the number of the variants. However,the standard particle swarm optimization would have large iteration times and slow convergence velocity if the measured data reached a certain amount. To solve the above issues,the paper provided mutants selection and optimization which based on improved particle swarm algorithm. By clustering and partitioning the test data set and enhancing the polymorphism of the mutations set,it optimized the particle swam algorithm. Experimental results show that under the premise of not affecting the adequacy of the test,and greatly reducing the number of variants,the improved method has a better optimization results compared with the K-means algorithm and the standard particle swarm algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2017年第3期752-755,共4页 Application Research of Computers
基金 陕西省自然科学基金资助项目(2015JM6359) 西安市科技计划资助项目(CXY1516(4)) 2016年陕西省工业攻关资助项目(2016GY-089)
关键词 软件测试 变异测试 变异体选择优化 粒子群优化算法 software test mutation testing mutations selection particle swarm optimization(PSO) algorithm
作者简介 王曙燕(1964-),女,陕西西安人,教授,博士,主要研究方向为软件测试、数据挖掘、智能信息处理; 杨悦(1990-),男(通信作者),陕西西安人,硕士研究生,主要研究方向为软件设计与测试、数据挖掘(544587217@qq.com); 孙家泽(1980-),男,陕西西安人,副教授,博士,主要研究方向为软件测试、数据挖掘、智能信息处理.
  • 相关文献

参考文献5

二级参考文献183

  • 1姜瑛,辛国茂,单锦辉,张路,谢冰,杨芙清.一种Web服务的测试数据自动生成方法[J].计算机学报,2005,28(4):568-577. 被引量:50
  • 2高鹰,谢胜利,许若宁,李朝晖.基于聚类的多子群粒子群优化算法[J].计算机应用研究,2006,23(4):40-41. 被引量:11
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:344
  • 4KUHN D R,REILLY M J.An investigation of the applicability ofdesign of experiments to software testing[C]//Proceedings of theAnnual NASA/IEEE Software Engineering Workshop(SEW).LosAlamitos:IEEE Press,2002:91-95.
  • 5LEI Y,TAI K C.In-parameter-Order:A test generation strategy forpairwise testing[C]//HASE'98:The 3rd IEEE International Sym-posium on High-Assurance Systems Engineering.Washington,DC:IEEE Computer Society,1998:254-261.
  • 6McCAFFREY J D.Generation of pairwise test sets using a geneticalgorithm[C]//Proceedings of the 2009 33rd Annual IEEE Inter-national Computer Software and Applications Conference.[S.l.]:IEEE,2009:625-628.
  • 7McCAFFREY J D.Generation of pairwise test sets using a simulatedbee colony algorithm[C]//IRI'09:Proceedings of the 10th IEEEInternational Conference on Information Reuse&Integration.Piscat-away:IEEE,2009:115-120.
  • 8COLBOURN C J,COHEN M B,TURBAN R C.A deterministicdensity algorithm for pairwise interaction coverage[C]//SE'04:Pro-ceedings of IASTED International Conference on Software Engineer-ing.Innsbruck:[s.n.],2004:345-352.
  • 9KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Perth:IEEE Service Center,1995:1942-1948.
  • 10SHI Y,EBERHART R C.A modified particle swarm optimizer[EB/OL].[2011-06-20].http://dsp.szu.edu.cn/pso/ispo/download/a%20modified%20pso.pdf.

共引文献38

同被引文献81

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部