期刊文献+

改进粒子群算法优化PID的冶金电气控制研究 被引量:2

Metallurgical Electrical Control Research to Optimize PID in Improving Particle Swarm Algorithm
在线阅读 下载PDF
导出
摘要 对于冶金系统的电气机组来说以往的控制方法已不能达到精准的目的,就其原因来说是受到外界环境干扰导致输出电压具有时变性和非线性的结果。为了弥补其不足,PID的冶金控制策略应运而生。专门针对冶金系统电气组的粒子群算法改进。通过分析PID控制参数存在的不足用粒子群算法对其求解,进而达到冶金系统的电气机组的准确无误。 For metallurgical system of electiical units of previous control methods, we caimot achieve the puipose of accurate way. Its :reason is caused by the external environment disturbance output voltage with the result of time- varying and nonlinear. In order to make up for the shortage, we begin metallurgical control strategy of PID arises at the; historic: moment. Specifically, electrical groups in particle swami algorithm are; improved- Through the analysis of the defects in the PID control parameters, we are using particle swami optimization (pso) algorithm for the swlation. Thus, It;achieves greatly in the accuracy and correctness of ijietalliirgical system of;electrical units, including the particle swann algorillim, PID to coixesponding improvement. The researcli suggests that it should have a veiy good control effect to improve particle swann algorithm to optimize PID metallurgical eleetiic control sygtein, which can avoid tlie interfiripce aJpility. So it can make the metallurgical control widely used.
作者 姚伟鹏
出处 《中国锰业》 2016年第6期201-202,共2页 China Manganese Industry
基金 陕西高等教育教学与改革研究项目(15J34)
关键词 粒子群算法 PID 治金电器 Particlf fwann optimization (pso) algorithm PID Metallurgical fleetrical appliance
作者简介 姚伟鹏(1975-),男,陕西西安人,教研室主任,讲师,研究方向:信息处理,手机:13389271348,E-mail:344563639@qq.com.
  • 相关文献

参考文献2

二级参考文献19

  • 1孙彦广.我国冶金自动化技术进展和发展趋势分析[J].自动化博览,2008,25(2):16-19. 被引量:8
  • 2Gorez R.A survey of PID auto-tuning methods[J].Journal A,1997,38(1):3-10.
  • 3刘益剑,张建明,王树青.基于PSO算法的PID控制器参数优化设计[C].杭州:第五届全球智能控制与自动化大会,2004.
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc IEEE Int Conf Neural Networks[C].Piscataway:IEEE Press,1995.
  • 5Eberhart R C,Shi Y.Particle swarm optimization:developments applications and resources[A].In Proc Congr Evolutionary Computation[C].Piscataway NJ:IEEE Press,2001.
  • 6Parsopoulos K E,V rahatis M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002,23(1):235-306.
  • 7Liu L,Mao Z.Water turbines PID controller based on genetic algorithm[J].Automation of Electric Power Systems,1997,21(12):41-43.
  • 8Toscano R.A simple robust PI/PID controller design via numerical optimization approach[J].Journal of Process Control,2005,15(1):81-88.
  • 9Ho W K,Hang C C,Cao L S.Tuning of pid controller based on gain and phase margin specification[J].Automatica,1995,31(3):497-502.
  • 10Astrom K J,Hagglund T.PID controller 2nd ed[M].USA:Instrument of Society of America,1995.

共引文献22

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部