期刊文献+

基于第一性原理的固氖零点振动能的量子理论计算 被引量:3

Quantum Calculation of Zero-point Vibration Energy of Solid Neon Based on the First-principle
在线阅读 下载PDF
导出
摘要 基于第一性原理,运用原子团簇理论和Hartree-Fock方法计算了固氖fcc结构最近邻原子间距为1.6~2.5的零点振动能、Gruneisen系数及其零点振动压强,并与已有文献进行比较.结果表明:固氖晶体的零点振动能相对于多体相互总能很小,大约为总能的6%左右,但不可忽略,且零点振动能随着原子间距和体积的增大而减小;Gruneisen系数随着体积的增大而增大,并始终处于1和2之间;零点振动引起的压强与前人的结果符合很好,零点振动对压强的贡献大约为总压强的3%左右,因而由此引起的压强计算误差并不大,但体积减小到某一固定值时须考虑零点振动压强,不可忽略. Based on the first-principle,the zero-point vibration energy,Gruneisen coefficient and the zeropoint vibration pressure of solid neon are calculated by using the atomic clusters theory combined with Hartree-Fock method in the atomic distance of 1.65~2.60 ,which are compared with the former theoretical calculation.The results show that the zero-point vibration energy of solid neon is only 6% of the many-body interaction energy,but should not be neglected,which decreases with the increasing of interatomic distance and molar volume.Gruneisen coefficient increases with the increasing of the molar volume,and its value remains 1~2.The zero-point vibration pressure accord well with the former theoretical calculation,and is about 3% of the total pressure.Although the calculation error of total pressure caused by zero-point vibration pressure is small,but the zero-point vibration pressure can’t be ignored when the molar volume is reduced to a fixed value.
作者 郑兴荣
出处 《宁夏大学学报(自然科学版)》 CAS 2016年第4期429-433,共5页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(11565018) 陇东学院青年科技创新项目(XYZK1501)
关键词 固氖 HARTREE-FOCK方法 零点振动能 Gruneisen系数 零点振动压强 solid neon Hartree-Fock method zero-point vibration energy Gruneisen coefficient zero-point vibration pressure
作者简介 郑兴荣(1986-),男,讲师,硕士,主要从事凝聚态物理与材料计算研究.
  • 相关文献

参考文献8

二级参考文献63

  • 1赵峥,朱建阳,王永成,B.Misra.一种可能的类热态──双温态[J].北京师范大学学报(自然科学版),1995,31(2):269-270. 被引量:1
  • 2赵峥.惯性效应起源于真空的变化[J].北京师范大学学报(自然科学版),1995,31(4):481-482. 被引量:1
  • 3Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics [ J ]. Commun. Mathl Phys, 1973, 31 (2) : 161 - 170.
  • 4Hawking S W. Particle creation by black holes [ J ]. Commun. Math. Phys, 1975,43 : 199 - 220.
  • 5Unruh W G. Notes on black hole evaporation [ J ]. Phys. Rev. D, 1976,14:870 - 892.
  • 6Fulling S A. Nonuniqueness of canonical field quanti- zation in riemannian space-time [ J ]. Phys. Rev. D, 1973,7:2850 -2862.
  • 7Davies P C W. Scalar particle production in Schwarzs-child and Rindler metrics [ J ]. J. Phys. A : Math. Gen, 1975,8:609 -616.
  • 8Gibbon G W, Hawking S W. Cosmological event hori- zons, thermodynamics, and particle creation [ J ]. Phys Rev D, 1977, 15:2738 - 2751.
  • 9Sakharov A D. Vacuum quantum fluctuations in curved space and the theory of gravitation [ J ]. Soy. Phys. Dokl, 1968,12 : 1040.
  • 10Volovik G E. Superfluid analogies of cosmological phe- nomena[ J ]. Phys. Rept. ,2001,351 : 195 - 348.

共引文献17

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部