期刊文献+

增强现实中基于LBS的矩形区域K-匿名位置隐私保护方法 被引量:5

Rectangular Region K-Anonymity Location Privacy Protection Based on LBS in Augmented Reality
在线阅读 下载PDF
导出
摘要 基于位置服务(LBS)和增强现实技术快速发展的同时,促进了基于位置服务的应用范围扩大,同时也带来了用户位置隐私泄露的隐患.因此,如何确保基于位置服务中数据的安全性,成为该项技术推广应用的关键问题.本文借助k-匿名法,提出矩形区域k-匿名法,将k-匿名法的理念引入该方法中,实验结果表明该方法提高了相对匿名度和匿名区域面积,从而有效地保护了用户的位置隐私. Rapid development of location based service ( LBS ) and augmented reality promote application of LBS, which also bring hidden danger of user location privacy disclosure. Therefore, how to ensure data security becomes key question in application of LBS. Here we introduced k-anonymity into privacy protection and proposed the rectangular region k-ano- nymity. Our results revealed that rectangular region k-anonymity enhanced relative anonymous degree and anonymous area,which could effectively protect user's location privacy.
作者 杨洋 王汝传
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期44-49,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(60973139、61170065、61171053) 江苏省自然科学基金(BK2011755) 江苏省科技支撑计划项目(BE2010197、BE2010198、BE2011844、BE2011189)
关键词 基于位置服务 位置隐私 k-匿名法 矩形区域k-匿名法 LBS, location privacy,k-anonymity,rectangular region k-anonymity
作者简介 通讯联系人:杨洋,副教授,研究方向:网格计算、增强现实技术、位置隐私保护等.E-mail:nj+.Yangyang@163.com
  • 相关文献

参考文献6

二级参考文献182

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)[C] //Proc of the 17th ACM SIGMOD-SIGACT SIGART Syrup on the Principles of Database Systems. Piscataway, NJ: IEEE, 1998:188-3.88.
  • 3Samarati P. Protecting respondents' identities in microdata release [J]. IEEE Trans on Knowledge and Data Engineering. 2001, 13 (6) : 1010-1027.
  • 4Fung B C M, Wang K, Chen R, et al. Privacy-preserving data publishing: A survey on recent developments [J]. ACM Computing Surveys, 2010, 42(4): 1-53.
  • 5Machanavajjhala A, Gehrke J, Kifer D. L-diversity: Privacy beyond k-anonymity [C] //Proc of the 22nd Int Conf on Data Engineering. Piscataway, NJ: IEEE, 2006. 24-36.
  • 6Wong C R, Li J, Fu A, et al. (a, k)-anonymity: An enhanced k anonymity model for privacy preserving data publishing [C] //Proe of the 12th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2006, 754-759.
  • 7Ye Xiaojun, Zhang Y W, Liu M. A personalized (a, k) anonymity model [C] //Proe of the 9th Int Conf on Web-Age Information Management. Berlin: Springer, 2008:341-348.
  • 8Xiao Xiaokui, Tao Yufen. Personalized privacy preservation [C] //Proc of the 25th ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2006:229-240.
  • 9Li Zude, Zhan Guoqiang, Ye Xiaojun. Towards an antiinference(k,l) anonymity model with value assoeiation rules [C] //Proc of DEXA. Berlin: Springer, 2006:883-893.
  • 10Wu Min, Ye Xiaojun. Towards the diversity of sensitive attributes in k-anonymity [C] //Proc of the 2006 IEEE/WIC/ ACM Int Conf on Web Intelligence and Intelligent Agent Technology. Piscataway, NJ: IEEE, 2006:98-104.

共引文献271

同被引文献29

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部