期刊文献+

基于多维时间序列分析的网络异常检测 被引量:29

Network Anomaly Detector Based on Multiple Time Series Analysis
在线阅读 下载PDF
导出
摘要 针对实际网络异常检测要求高检测率、低误报率的问题,提出了一种基于多维时间序列的检测方法。首先,通过对实际网络流量进行长期观测,提取多维特征对网络流量进行描述;然后,利用时间序列分析方法对多维特征进行预测,计算预测值与真实值的时间序列偏离度,并且实时更新偏离度,适应多变的网络环境;最后,利用支持向量机(SVM)算法对偏离度向量进行分类判别,判断是否发生异常。目前该方法已应用于校园网关键服务器的实时监测与防护工作中,实际服务器流量的预测、告警结果表明,该方法可以有效检测网络中的异常流量。 The anomaly detection of network traffic in practice requires both high detection rate and low false alarm rate. To address this problem, a detection approach based on multidimensional time series analysis was proposed. Firstly, the network traffic was observed in a long time, and multiple network features were chosen for building the network behavior model. Subsequently, multiple features were pre- dicted by the method of time series analysis. Then the degree of deviation between the predict value and the real value was calculated and updated. Finally, the state of whether the network flow is normal was determined by using support vector machine to classify the degree of deviation in time series. This method has been applied to real-time monitoring and protection on a campus key server. The results showed that it can detect anomalies effectively in network traffic.
出处 《工程科学与技术》 EI CAS CSCD 北大核心 2017年第1期144-150,共7页 Advanced Engineering Sciences
基金 国家自然科学基金资助项目(61272447)
关键词 异常检测 时间序列 网络流量 多维特征 网络安全 anomaly detection time series network traffic multiple features network security
作者简介 陈兴蜀(1968-),女,教授,博士生导师,博士.研究方向:云计算;信息安全;计算机网络.E-mail:chenxsh@scu.edu.cn 通信联系人E-mail:zengxm@scu.edu.cn
  • 相关文献

参考文献8

二级参考文献108

  • 1孙钦东,张德运,高鹏.基于时间序列分析的分布式拒绝服务攻击检测[J].计算机学报,2005,28(5):767-773. 被引量:55
  • 2陈伟,何炎祥,彭文灵.一种轻量级的拒绝服务攻击检测方法[J].计算机学报,2006,29(8):1392-1400. 被引量:26
  • 3Lawrence Ho L, Cavuto D J, Papavassiliou S, et al. Adaptive and automated detection of service anomalies in transaction-oriented WAN ' s: Network analysis, algorithms, implementation and deployment[J]. IEEE Journal of Selected Areas in Communications, 2000, 18(5) : 744 -757
  • 4Hood C S, Ji C. Beyond thresholds : an alternative method for extracting information from network measures[ C ]//Proceedings of IEEE Globecom Conference. Phoenix:Arizona, 1997:487-491
  • 5Brutlag J. Aberrant behavior detection in time series for network monitoring [ C ]// Proceedings of the USENIX Fourteenth System Administration Conference LISA XIV. California: USENIX Assoc, 2000 : 139 - 146
  • 6Ho L L, Cavuto D J, Papavassiliou S. Adaptive and automated detection of service anomalies in transactionoriented WAN's: network analysis, algorithms, implementation, and deployment [ J]. IEEE Journal of Seletected Areas in Communications, 2000, 18 (5) : 744 -757
  • 7Brockwel P J, Davis R A. Introduction to time series and forecasting [ M]. New York: Springer, 2002: 326- 328
  • 8Chatfield C, Yark M. The Holt-Winters forecasting: some practical issues [J]. The Statistician, 1988, 37 : 129 - 140
  • 9Bermudez J D, Segura J V, Vercher E. Holt-Winters forecasting; an ahernative formulation applied to UK air passenger data [ J]. Journal of Applied Statistics, 2007, 34 (9) : 1075 - 1090
  • 10CRISTINAINI N,SHWAE-TAYLDR J.支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004:82-108.

共引文献38

同被引文献262

引证文献29

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部