期刊文献+

整合临床及多参数MRI信息的前列腺癌CAD系统:诊断效能研究 被引量:17

Computer-aided diagnosis system for the detection of prostate cancer based on clinical information and multiparametric MRI:analysis of the diagnostic efficacy
在线阅读 下载PDF
导出
摘要 目的:将临床信息和多参数MRI(mpMRI)数据输入前列腺计算机辅助诊断(CAD)系统,研究其诊断效能。方法:选取本院前列腺MRI数据库中连续266例患者的病例资料,所有患者均以定性诊断为目的行前列腺MRI检查,临床资料和病理结果完整,且完成随访。由1位高年资泌尿系统影像诊断医师根据前列腺影像报告和数据系统(PI-RADS)进行阅片,以PI-RADS评分为mpMRI信息,输入CAD系统。选取患者资料中的年龄、T-PSA、F/T-PSA、直肠指诊、超声表现等作为临床信息,输入CAD系统。采用受试者工作特征曲线(ROC)分析,以最终诊断结果为金标准,比较mpMRI数据、临床信息、mpMRI+临床信息作为输入项时,CAD输出结果的诊断效能。结果:以临床信息为输入项,CAD诊断前列腺癌的ROC下面积(AUC)为0.888;以mpMRI信息作为输入项,CAD诊断前列腺的AUC为0.980;将mpMRI和临床信息整合作为输入项时,诊断效能最高,AUC为0.986,相应的诊断敏感度、特异度和符合率分别为93.65、96.15和94.12。结论:整合临床信息和mpMRI信息输入前列腺CAD系统,可得到最高的诊断效能。 Objective:To evaluate the diagnostic efficacy of computer-aided diagnosis (CAD) system in detection of prostate cancer (PCa). Methods: 266 consecutive patients were recruited from institutional prostate MRI database. All the patients were suspected of PCa,who underwent mpMRI (T2 WI,DWI,MRS and DCE) examination with subsequent ultrasound guided biopsy within 3 months. PI-RADS scores given by uroradiologists were input as mpMRI information for CAD. Clinical data including age,T-PSA,F/T-PSA,digital rectal examination (DRE) and ultrasound findings were input as clinical information for CAD,the output of CAD was the probability of PCa. Taking the clinical outcome as reference standard, the clinical information,mpMRI information or integration of clinical and mpMRI information were input into the CAD respectively,and the corresponding diagnostic efficacy of CAD was studied using ROC analysis. Results: Based on clinical information,the area under the ROC (AUC) of the CAD system for diagnosis of PCa was 0. 888;based on mpMRI,the AUC was 0. 980;and based on clinical information combined with mpMRI, the diagnostic efficacy was the highest with AUC of 0. 986 ,and the corresponding diagnostic sensitivity, specificity and accuracy were 93.65,96.15 and 94.12. Conclusion: The input of CAD system in detection of PCa should consist of both the clinical information and the information of mpMRI.
出处 《放射学实践》 北大核心 2016年第12期1143-1145,共3页 Radiologic Practice
关键词 诊断 计算机辅助 磁共振成像 前列腺肿瘤 前列腺特异性抗原 Diagnosis, computer-assisted Magnetic resonance imaging Prostatic neoplasm Prostate-specific antigen
作者简介 高歌(1988-),女,河南郑州人,博士研究生,主要从事MR新技术和影像信息学研究工作。 通讯作者:王霄英,E-mail:cjr.wangxiaoying@vip.163.com
  • 相关文献

参考文献6

二级参考文献69

  • 1王霄英,周良平,丁建平,吴胜昌,蒋学祥.前列腺癌的磁共振成像:直肠内线圈与腹部相控阵线圈的比较[J].中国医学影像技术,2003,19(6):727-729. 被引量:9
  • 2丁建平,王霄英,李俊敏,蒋学祥,肖江喜.前列腺和精囊磁共振扩散成像中EPI与SSFSE序列的比较[J].临床放射学杂志,2005,24(10):890-893. 被引量:2
  • 3何静,王霄英,黄嵘,李飞宇,许玉峰,蒋学祥.前列腺癌骨转移的临床诊断:MRI与同位素骨扫描的比较[J].实用放射学杂志,2007,23(4):500-504. 被引量:7
  • 4Global cancer facts and figures 2007 [ M ]. Atlanta, GA : American Cancer Society, 2007.
  • 5Oliver SE, May MT, Gunnel D. International trends in prostatecancer mortality in the "PSA ERA" [J]. Int J Cancer, 2001, 92 (6) : 893 -898.
  • 6Fausett LV. Fundamentals of neural networks : architectures, algorithms, and applications[M]. USA: Prentice-Hall, 1994.
  • 7Ripley BD. Pattern recognition and neural networks [ M ]. UK: Cambridge University Press, 1996.
  • 8Reekwitz T, Potter SR, Snow PB, et al. Artificial neural networks in urology[J]. Prostate Cancer P D, 1999, 2(5) : 222 -226.
  • 9Finne P, Finne R, Auvinen A, et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network[J]. Urology, 2000, 56(3): 418-422.
  • 10Djavan B, Remzi M, Zlotta A, et al. Novel artificial neural network for early detection of prostate cancer [ J ]. J Clin Oncol, 2002, 20(4) : 921 -929.

共引文献54

同被引文献120

引证文献17

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部