期刊文献+

测地流上的封闭周期轨道的渐近扩张

Asymptotic expansion for closed orbits of geodesic flows
在线阅读 下载PDF
导出
摘要 黎曼流形上的双曲流或Anosov流的闭轨道是一些常见的动力系统的周期运动的像。例如测地流就是一种特殊的双曲流,而闭测地线可以看作是测地流的闭轨道。得到了负曲率流形上的闭测地线的渐近形式.对于一对闭测地线,若它们的轨道长度之差位于一个已知的区间内,且它们的字长都等于一个定值,而对于满足这些条件的闭测地线的渐近问题,是文章的主要研究内容。 The closed orbits of hyperbolic or Anosov flows on Riemann manifolds are the images of the periodic motion of some common dynamical systems. For example, the geodesic flow is a special double flow, and closed geodesics can be regarded as a closed orbit of the geodesic flows. In this paper we obtain asymptotic estimates for pairs of closed geo- desics on negatively curved manifolds. For a pair of closed geodesics,the differences of whose lengths lie in a prescribed shrinking intervals and their length are equal to a constant value. And researching the asymptotic question for which pairs of geodesics meeting these aboving conditions is the main content of this article.
作者 刘亚丽
出处 《湖北师范学院学报(自然科学版)》 2016年第4期22-27,共6页 Journal of Hubei Normal University(Natural Science)
关键词 测地线 傅里叶变换 测地流 符号动力系统 geodesics Fourier transform geodesic flows symbolic dynamical systems
作者简介 剐亚丽(1992-),女,河南泌阳人,硕士生.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部