期刊文献+

各种典型边界FGM矩形板面内自由振动的二维弹性分析

Two-Dimensional Elasticity Solutions for In-Plane Free Vibration of FGM Rectangular Plates under Different Boundary Conditions
在线阅读 下载PDF
导出
摘要 为获得功能梯度材料(FGM)矩形板面内自由振动的动力学响应,基于二维线弹性理论建立了功能梯度材料矩形板面内自由振动的控制微分方程.采用微分求积法(DQM)数值研究了9种典型边界下FGM矩形板面内自由振动的频率特性,分析了边界条件、长宽比及梯度指数对自振频率的影响.分析结果表明:通过设置梯度指数为0,将FGM矩形板退化为各向同性矩形板,与已有各向同性矩形板的文献结果进行比较,表明了DQM的适用性和精确性;9种边界下长宽比对FGM矩形板基频的影响不同,基频随长宽比的增大而增大的板分别为:CC-C-C板、SS2-C-SS2-C板、C-C-C-F板、SS1-C-SS1-C板、C-C-F-F板和SS1-SS1-SS2-SS2板;基频随长宽比的增大而减小的板分别为:F-F-F-F板与C-F-C-F板;SS1-SS1-SS1-SS1板发生剪切自锁现象,基频随长宽比的增大而基本保持不变;基频随梯度指数的增大而快速减小,梯度指数p>10时,基频变化不再明显. In order to obtain the dynamic responses on in-plane free vibration of functionally graded material (FGM) rectangular plates, based on the two-dimensional linear elasticity theory, the governing partial differential equations for the in-plane free vibration of FGM rectangular plates were derived. Using differential quadrature method (DQM) , the frequency characteristics for in-plane free vibration of FGM rectangular plates under 9 different boundary conditions were investigated. The effects of boundary conditions, geometrical parameters and material gradient indexes on the dimensionless frequencies of the FGM rectangular plates were analyzed. The material gradient index was set as zero to take FGM rectangular plates as isotropic rectangular plates. Then, the applicability and accuracy of the DQM were demonstrated by comparing the in-plane free vibration of the obtained isotropic rectangular plates with those in literature. The effect of the length-width ratio on the fundamental frequency of the FGM rectangular plates varies under different boundary conditions. The fundamental frequency increases with the length-width ratios for the plates C-C-C-C, SS2-C-SS2-C, C- C-C-F, SS1-C-SS1-C, C-C-F-F and SS1-SS1-SS2-SS2 , and decreases with the increase of the length- width ratios for the plates F-F-F-F and C-F-C-F, but has no significant changes for SS1-SS1-SS1-SS1 plate because of shear locking. The fundamental frequency decreases rapidly with the increase of material gradient indexes, but it has no obvious change when the material gradient index pis more than 10.
作者 蒲育 滕兆春
出处 《西南交通大学学报》 EI CSCD 北大核心 2016年第6期1190-1197,共8页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(11372123) 甘肃省自然科学基金资助项目(148RJZA017)
关键词 FGM矩形板 面内自由振动 无量纲频率 微分求积法(DQM) FGM rectangular plates in-plane free vibration dimensionless frequency DQM(differential quadrature method)
作者简介 蒲育(1984-),男,讲师,硕士,研究方向为新型材料的力学行为,电话:13919181723,E-mail:shifopuyu@126.com
  • 相关文献

参考文献4

二级参考文献28

  • 1翟婉明,夏禾.列车一轨道一桥梁动力相互作用理论与工程应用[M].北京:科学出版社,2011.
  • 2Lee S Y, Kes H Y. Free vibrations of non-uniform beams resting on two-parameter elastic foundation with general elastic end restraints [ J ]. Computers. Structures, 1990,34 : 421 - 429.
  • 3Wang C M, Lam K Y, He X Q. Exact solutions for Timoshenko beams on elastic foundations using Green's functions [ J]. Mechanics of Structures and Maehines, 1998, 26(1) :101 - 113.
  • 4Ho S H, Chen C K. Analysis of general elastically end restrained non-uniform beams using differential transform [J]. Applied. Mathematic Modelling, 1998, 22(4/5), 219 - 234.
  • 5De Rosa M A, Maurizi M J. The influence of concentrated masses and pastemak soil on the free vibrations of Euler beams-exact solution [ J ]. Journal of Sound and Vibration, 1998, 212(4) :573 -581.
  • 6Chen W Q, Lu C F, Bian Z G. A mixed method for bending and free vibration of beams resting on a Pastemak elasticfoundation [ J ]. Applied Mathematical Modelling, 2004, 28 (10) : 877 - 890.
  • 7Ding H J, Huang D J, Chen W Q. Elasticity solutions for plane anisotropic functionally graded beams [ J ]. International Journal of Solids and Structures, 2007, 44( 1 ) :176- 196.
  • 8Ying J, Lu C F, Chen W Q. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations [ J ]. Composite Structures, 2008, 84 ( 3 ) : 209 -219.
  • 9Alshobagy A E, Ehaher M A, Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method [ J ]. Applied Mathematical Modelling, 2011, 35( 1 ) :412 -425.
  • 10Thai H T, Vo T P. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories [ J ]. International Journal of Mechanical Sciences. 2012. 62( 1 ) :57 -66.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部