期刊文献+

神经网络的非脆弱状态估计 被引量:1

Non-Fragile State Estimation for Neural Networks
在线阅读 下载PDF
导出
摘要 研究一类带有时滞和非线性扰动的连续神经网络的非脆弱状态估计问题.针对实际应用中估计器参数不能精确获得的情况,考虑具有加性有界增益不确定性的非脆弱状态估计器来描述这一现象.主要目的是设计一个时滞神经网络的非脆弱状态估计器,使其估计误差动态收敛到渐近平衡状态.采用李雅普诺夫函数和矩阵分析技术,建立满足渐近稳定的充分条件,获取所设计的状态估计器增益特性.最后,通过数值仿真证明该算法的有效性. The non-fragile state estimation problem is investigated for a class of continuous neural networks with time-delays and nonlinear perturbations. As the estimator parameters can t be accurately obtained in practice, a non-fragile state estimator with additive bounded gain uncertainty is used to describe this phenomenon. The main purpose of the addressed problem is to design a non-fragile state estimator for the delayed neural networks such that the dynamics of the estimation error converges to equilibrium asymptotically.Utilizing a combination of the Lyapunov functionals and the matrix analysis techniques, sufficient conditions are established for the asymptotic stability, and the gain characteristics of the state estimator are obtained. Finally, a simulation example is used to illustrate the effectiveness of the proposed method.
作者 杨帆 董宏丽 李佳慧 安杏杏 邵晓光 YANG Fan DONG Hong-Li LI Jia-Hui AN Xing-Xing SHAO Xiao-Guang(Northeast Petroleum University Electrical and Information Engmeenng Academy, Daqing Heilongjiang 163318, China)
出处 《指挥与控制学报》 2016年第3期213-222,共10页 Journal of Command and Control
基金 国家自然科学基金(61422301 61374127) 黑龙江省杰出青年科学基金(JC2015016) 东北石油大学研究生创新科研项目(YJSCX2016-026NEPU)资助~~
关键词 神经网络 状态估计 非脆弱性 时滞 李雅普诺夫函数 矩阵不等式 neural networks state estimation non-fragility time-delays lyapunov functional matrix inequality
作者简介 杨帆(1990-),女,硕士,主要研究方向为神经网络和智能控制. 董宏丽(1977-),女,博士,博士生导师,主要研究方向为智能控制和网络化控制.本文通信作者.E-mail:shiningdhl@vip.126.com. 李佳慧(1992-),女,硕士,主要研究方向为网络化控制. 安杏杏(1991-),女,硕士,主要研究方向为深度神经网络. 邵晓光(1989-),男,硕士,主要研究方向为深度神经网络.
  • 相关文献

参考文献1

二级参考文献18

  • 1van der S A. L2-Gain and Passivity Techniques in Nonlinear Control. London: Springer-Verlag, 1996.
  • 2Brogliato B, Lozano R, Maschke B. Dissipative Systems Analysis and Control: Theory and Applications. London: Springer-Verlag, 2000.
  • 3Lin W, Shen T L. Robust passivity and feedback design for minimum-phase nonlinear systems with structural uncertainty. Automatica, 1999, 35(1): 35-47.
  • 4Gao H J, Chen T W, Chai T Y. Passivity and passification for networked control systems. SIAM Journal on Control and Optimization, 2007, 46(4): 1299-1322.
  • 5Zhao J, Hill D J. Passivity and stability of switched systems: a multiple storage function method. Systems and Control Letters, 2008, 57(2): 158-164.
  • 6Bemporad A, Bianchini G, Brogi F. Passivity analysis and passification of discrete-time hybrid systems. IEEE Transactions on Automatic Control, 2008, 53(4): 1004-1009.
  • 7Rojas O J, Bao J, Lee P L. On dissipativity, passivity and dynamic operability of nonlinear processes. Journal of Process Control, 2008, 18(5): 515-526.
  • 8Chou Y S, Wu C H. Passivity-based control of the phthalic anhydride fixed-bed reactor. Chemical Engineering Science, 2007, 62(5): 1282-1297.
  • 9Gu K Q, Kharitonov V L, Chen J. Stability of Time-delay Systems. Boston: Birkhauser, 2003.
  • 10Niculescu S I, Lozano R. On the passivity of linear delay systems. IEEE Transactions Automatic Control, 2001, 46(3): 460-464.

共引文献5

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部