期刊文献+

多运动形式下的行人三维定位方法研究 被引量:1

Three-dimensional pedestrian positioning method in multi motion mode
在线阅读 下载PDF
导出
摘要 针对行人复杂多变的运动形式给室内定位带来较大偏差的问题,提出了一种基于加速度时域特征的行人运动分类方法,并利用分类结果进行室内行人三维定位。利用垂直加速度的变化规律将加速度信号划分为连续的单步信号,计算单步周期内加速度信号的时域特征,基于BP神经网络和支持向量机设计一种二分树结构的分类器。经大量人员运动实验验证,该分类器对走、跑,上下楼梯3类运动形式的分类准确率接近100%,上、下楼梯的分类准确率为95%;在行人运动形式确定的情况下,利用不同的步长模型和航向信息进行室内三维定位,定位误差为1.5 m。 The moving form of the pedestrian is complicated and changeable,which brings great deviation to the real time positioning. A pedestrian motion classification method based on acceleration time domain feature is proposed. The vertical acceleration signal is divided into continuous single-step signal. The time domain features are used to train the BP neural network classifier and SVM classifier.In the end,a motion classifier based on dichotomy tree is proposed. Through a large number of movement experimental verification,the classification accuracy rate among walk,run and up / down stair is nearly 100%,and the classification accuracy rate between up-stair and down-stair is about 95%.Different step-length models and headings are used to calculate the position information,with the tracking error at 1. 5 m.
出处 《北京信息科技大学学报(自然科学版)》 2016年第5期82-86,96,共6页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金资助项目(61471046) 北京市教委市属高校创新能力提升计划项目(TJSHG201510772017) 高动态导航技术北京市重点实验室开放课题
关键词 室内定位 运动分类 时域特征 神经网络 支持向量机 indoor positioning motion classification time-domain feature neural network support vector machine
作者简介 赵辉,男,硕士研究生; 通讯作者:李擎,女,博士,教授。
  • 相关文献

参考文献10

  • 1Zhou B,Li Q,Mao Q,et al.Activity sequencebased indoor pedestrian localization using smart phones[J].IEEE Transactions on HumanMachine Systems,2014,45(5):562-574.
  • 2Inderst F,Santoni F P M.3D pedestrian dead reckoning and activity classification using waist-mounted inertial measurement unit[C]∥International Conference on Indoor Positioning and Indoor Navigation.IEEE,2015.
  • 3Khalifa S,Hassan M,Seneviratne A.Adaptive pedestrian activity classification for indoor dead reckoning systems[C]∥International Conference on Indoor Positioning and Indoor Navigation.2013:1-7.
  • 4吴哲君,赵忠华,唐雷.基于SVM的行人步态实时分类方法[J].电子测量技术,2015,38(7):41-44. 被引量:19
  • 5王见,陈义,邓帅.基于改进SVM分类器的动作识别方法[J].重庆大学学报(自然科学版),2016,39(1):12-17. 被引量:14
  • 6汪少初,刘昱,郝文飞,刘开华,路文平.基于惯性传感的人员行进动作识别方法[J].电子测量与仪器学报,2014,28(6):630-636. 被引量:26
  • 7Preece S J,John Yannis G,Kenney L P J,et al.A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data.[J].IEEE Transactions on Biomedical Engineering,2009,56(3):871-879.
  • 8Zhen-Yu H E,Jin L W.Activity recognition from acceleration data using AR model representation and SVM[C]∥2008 international conference on machine learning and cybernetics.2008:2245-2250.
  • 9刘宇,江宏毅,王仕亮,王伊冰,陈燕苹.基于加速度时域特征的实时人体行为模式识别[J].上海交通大学学报,2015,49(2):169-172. 被引量:14
  • 10Seneviratne A.Feature selection for floor-changing activity recognition in multi-floor pedestrian navigation[C]∥International Conference on Mobile Computing&Ubiquitous Networking.IEEE,2014:1-6.

二级参考文献48

  • 1程琼,庄留杰,付波.基于傅立叶描述子和人工神经网络的步态识别[J].武汉理工大学学报,2008,30(1):126-129. 被引量:11
  • 2ZHANG ChunHua 1 , TIAN YingJie 2 & DENG NaiYang 3,1 School of Information, Renmin University of China, Beijing 100872, China,2 Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100080, China,3 College of Science, China Agricultural University, Beijing 100083, China.The new interpretation of support vector machines on statistical learning theory[J].Science China Mathematics,2010,53(1):151-164. 被引量:13
  • 3薛洋.基于单个加速度传感器的人体运动模式识别[D].广州:华南理工大学.2011.
  • 4JIMENEZ A R, SECO F, PRIETO C, et al. A compar- ison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[ C]. 2009. WISP 2009. IEEE In- ternational Symposium on Intelligent Signal Processing, 2009 : 37-42.
  • 5HARLE R. A survey of indoor inertial positioning sys- tems for pedestrians [ J ]. Communications Surveys & Tutorials, IEEE, 2013 (99) : 1-13.
  • 6LARA O, LABRADOR M. A survey on human activity recognition using wearable sensors [ J ]. Communica- tions Surveys & Tutorials, IEEE, 2012 (99) : 1-18.
  • 7POPOOLA 0 P, KEJUN W. Video-based abnormal hu- man behavior recognition: a review systems, man, and cybernetics [ J ]. IEEE Transactions on Applications and Reviews, 2012, 42 (6) : 865-878.
  • 8CASPERSEN C J, POWELL K E, CHRISTENSON G M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research [ R]. Public Heahh Rep, 1985 Mar-Apr, 100(2) : 126-131.
  • 9FOERSTER F, SMEJA M. Detection of posture and motion by accelerometry: a validation study in ambula- tory monitoring [ J ]. Computers in Human Behavior, 1999, 15(5):: 571-583.
  • 10XIUXIN Y, ANH D. Implementation of a wearerable real-time system for physical aetivity recognition based on Naive Bayes classifier[ C ]. 2010 International Con-ference on Bioinformatics and Biomedical Technology ( ICBBT).

共引文献66

同被引文献9

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部