期刊文献+

基于离散粒子群算法的数据中心网络流量调度研究 被引量:23

Data Center Network Flow Scheduling Based on DPSO Algorithm
在线阅读 下载PDF
导出
摘要 数据中心网络利用多个并行路径为集群计算等网络服务提供高对分带宽.然而,现有的流量调度算法可能会引起链路负载不均衡,核心交换机冲突加剧,造成网络总体性能降低.本文将流调度问题转化成0-K背包问题求解,提出基于离散粒子群的流调度算法DPSOFS(Discrete Particle Swarm Optimization Flow Scheduling).该算法根据Fat-Tree结构特点定义了粒子速度、位置和运算规则,以两次迭代冲突流个数差值作为目标函数,并限定路径搜索范围,减少随机搜索的盲目性.仿真实验验证了该算法对减少流冲突快速有效,能提高网络对分带宽. Data center networks leverage multiple parallel paths connecting end host pairs to offer high bisection bandwidth forcluster computing applications. However,state of the art flowscheduling algorithms may cause unfair link utilization and saturation of core switches,resulting in overall bandwidth loss. In the paper,we regard the flowscheduling problem as a 0-K knapsack problem and propose a newflowscheduling algorithm named DPSOFS based on DPSO. DPSOFS formulates the position,velocity and their operation rules of particles according to Fat-Tree topology structure,and defines objective function as the difference of the number of conflict flows between two iterations. Moreover,our proposed mechanism reduces random search blindness by limiting the range of the path search. The simulation suggests that it can improve overall network bisection efficiently.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第9期2197-2202,共6页 Acta Electronica Sinica
基金 973计划(No.2012CB315903) 浙江省重点科技创新团队(No.2011R50010-21) 国家科技支撑计划(No.2014BAH24F01) 国家自然科学基金(No.61379118)
关键词 Fat-Tree 数据中心网络 离散粒子群 流调度 Fat-Tree data center network DPSO flowscheduling
作者简介 林智华男,1972年12月生于福建福州,现为福建江夏学院电子信息科学学院副教授,主要研究方向为新一代网络技术.E-mail:lindiva@126.com
  • 相关文献

参考文献1

二级参考文献11

  • 1魏薇,杨放春.基于遗传算法进化业务冲突检测规则的研究[J].电子学报,2007,35(4):634-639. 被引量:3
  • 2N CHOWDHURY, R BOUTABA. Network virtualization: state of the art and research challenges [ J ]. IEEE Communications Magazine, 2009,47(7) :20 - 26.
  • 3N FEAMSTER, L GAO,J REXFORD. How to lease the Inter- net in your spare time[ J]. ACM SIGCY)MM Computer Com- munication Review, 2007,37(1) :61 - 64.
  • 4M YU, Y YI, J REXFORD, et al. Rethinking virtual network emlxxlding: Substlate suptx)rt for path splitting and migration [ J ]. ACM SIGCX)MM Computer Communication Review, 2008,38(2) : 17 - 29.
  • 5Y ZHU, M AMMAR. Algorithms for assigning substrate network resources to virtual network components[ A]. INFOCOM [ C] .Barcelona: IF.F.E, 2006.1 - 12.
  • 6J LU, J TURNER. Efficient mapping of virtual networks onto a shared substrate [ R]. St. Louis : Department of Computer Science and Engineering, Washington University,2006.
  • 7X CHENG, S SU, Z ZHANG, et al. Virtual Network Embedcling Through Topology-Aware Node Ranking[ J].ACM SIGCOMM Computer Communication Review, 2011,41 (2) : 39 - 47.
  • 8N CHOWDHURY,M RAHMAN, R BOUTABA. Vi_raml network embedding with coordinated node and link mapping[ A].INFOCOM[ C] .Rio de Janeiro: IEEE,2009.783- 791.
  • 9J KENNEDY, R EBERHART. Particle swarm optimization [ A]. International Conference on Neural Networks[ C ]. Perth: IEEE, 1995.1942 - 1948.
  • 10J HOLLAND,Adaptation in natural and artificial systems[ M]. MA, USA:MIT Press Cambridge, 1992.

共引文献32

同被引文献169

引证文献23

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部