摘要
针对传统隐Markov模型(HMM)在机械故障诊断中存在的不足,即HMM过学习或溢出问题以及隐状态数需要事先假定,提出了基于无限隐马尔可夫模型(i HMM)的机械故障诊断方法。在提出的方法中,以谱峭度为特征提取,i HMM为识别器,并以最大似然估计来确定设备运转中出现的故障类型。同时,将提出的方法与传统的HMM故障识别方法进行了对比分析。实验结果表明,提出的方法是有效的,得到了非常满意的识别效果。提出的方法能够有效避免了HMM在建模初期遗留下的不足,可以自适应确定模型中隐藏状态数和模型数学结构,因此,提出的方法明显优于HMM故障识别方法。
Aimingat the deficiency of traditional HMMfault recognition model in machinery fault diagnosis,i.e.over-learning or overflow problems and requiring to assume the hidden states in advance,a new machinery fault diagnosismethod based on infinite Hidden Markov Model (iHMM)is proposed.In the proposed method,the spectral kurtosis is used as the fault feature extraction,the iHMM as theidentifier,and the maximum likelihood estimation is used to determinethe mechanical fault type occurred in the equipment operation. At the same time,the proposed method and traditional HMMfault identification method are compared and analyzed.The experiment result shows that the proposedrecognition method has very satisfactory recognition effect.The proposed method can effectively avoid the deficiency of the HMMmethod in the initial modeling stage,can adaptively determine the number of hidden states in the model and the mathematical structure of the model.Therefore,the proposed method is obviously superior to the traditional HMMfault recognition method.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016年第10期2185-2192,共8页
Chinese Journal of Scientific Instrument
基金
国家自然科学基金(51675258
51265039
51261024)
机械传动国家重点实验室开放基金(SKLMT-KFKT-201514)
广东省数字信号与图像处理技术重点实验室(2014GDDSIPL-01)项目资助
作者简介
李志农(通讯作者),2003年于浙江大学获得博士学位,现为南昌航空大学教授,主要研究方向为智能检测与信号处理、机械状态监测与故障诊断。E-mail:lizhinong@tsinghua.org.cn柳宝,2013年在湖北工程学院获得学士学位,现为南昌航空大学硕士研究生,主要研究方向为智能检测与信号处理、机械状态监测与故障诊断。E-mail:albert_bao@foxmail.com侯娟,2014年在山西大学获得学士学位,现为南昌航空大学硕士研究生,主要研究方向为智能检测与信号处理,机械状态监测与故障诊断。E-mail:cathera@foxmail.com